001     859504
005     20210130000316.0
024 7 _ |a 10.1016/j.advwatres.2018.11.015
|2 doi
024 7 _ |a 0177-3569
|2 ISSN
024 7 _ |a 0309-1708
|2 ISSN
024 7 _ |a 0341-194X
|2 ISSN
024 7 _ |a 0341-194x
|2 ISSN
024 7 _ |a 0341-1958
|2 ISSN
024 7 _ |a 1872-9657
|2 ISSN
024 7 _ |a WOS:000453714000016
|2 WOS
024 7 _ |a altmetric:52274430
|2 altmetric
024 7 _ |a 2128/23135
|2 Handle
037 _ _ |a FZJ-2019-00356
082 _ _ |a 550
100 1 _ |a Rahman, M.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Towards a computationally efficient free-surface groundwater flow boundary condition for large-scale hydrological modelling
260 _ _ |a Amsterdam [u.a.]
|c 2019
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1571723221_13726
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Shallow groundwater is a critical component of the terrestrial water cycle. It sustains baseflow in rivers, supplies root zones with soil moisture during dry periods, and directly influences the land-atmosphere exchange processes. Nonetheless, the integration of groundwater into large-scale hydrological models remains challenging. The most detailed way of representing groundwater dynamics is to incorporate three-dimensional, variably saturated flow processes in the subsurface representation of hydrological models. However, such detailed modelling is still a challenge for global hydrological applications, mainly due to its high computational demand. In this study, a free-surface boundary condition called the Groundwater Flow Boundary (GFB) is developed to represent groundwater dynamics in a more computationally-efficient manner than the full three-dimensional models do. We evaluate GFB using two synthetic test cases, namely an infiltration experiment and a tilted-v catchment, which focus on groundwater recharge and discharge processes, respectively. The simulation results from GFB are compared with a three-dimensional groundwater flow model and with an over-simplified approach using a free-drainage lower boundary condition to assess the impact of our assumptions on model results. We demonstrate that GFB is computationally more efficient compared to the three-dimensional model with limited loss in model performance when simulating infiltration and runoff dynamics.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Rosolem, R.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Kollet, Stefan
|0 P:(DE-Juel1)151405
|b 2
700 1 _ |a Wagener, T.
|0 0000-0003-3881-5849
|b 3
773 _ _ |a 10.1016/j.advwatres.2018.11.015
|g Vol. 123, p. 225 - 233
|0 PERI:(DE-600)2023320-6
|p 225 - 233
|t Advances in water resources
|v 123
|y 2019
|x 0309-1708
856 4 _ |u https://juser.fz-juelich.de/record/859504/files/1-s2.0-S0309170818303701-main.pdf
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/859504/files/1-s2.0-S0309170818303701-main.pdf?subformat=pdfa
|y Restricted
856 4 _ |y Published on 2018-12-04. Available in OpenAccess from 2020-12-04.
|u https://juser.fz-juelich.de/record/859504/files/rahman_etal_2018_update.pdf
856 4 _ |y Published on 2018-12-04. Available in OpenAccess from 2020-12-04.
|x pdfa
|u https://juser.fz-juelich.de/record/859504/files/rahman_etal_2018_update.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:859504
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)151405
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV WATER RESOUR : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21