000859522 001__ 859522
000859522 005__ 20210130000319.0
000859522 0247_ $$2doi$$a10.1038/s41567-018-0060-9
000859522 0247_ $$2ISSN$$a1745-2473
000859522 0247_ $$2ISSN$$a1745-2481
000859522 0247_ $$2WOS$$aWOS:000431301800017
000859522 0247_ $$2altmetric$$aaltmetric:30047608
000859522 037__ $$aFZJ-2019-00374
000859522 082__ $$a530
000859522 1001_ $$00000-0001-8252-2061$$aFobes, D. M.$$b0$$eFirst author
000859522 245__ $$aTunable emergent heterostructures in a prototypical correlated metal
000859522 260__ $$aBasingstoke$$bNature Publishing Group$$c2018
000859522 3367_ $$2DRIVER$$aarticle
000859522 3367_ $$2DataCite$$aOutput Types/Journal article
000859522 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1549532416_22653
000859522 3367_ $$2BibTeX$$aARTICLE
000859522 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000859522 3367_ $$00$$2EndNote$$aJournal Article
000859522 520__ $$aAt the interface between two distinct materials, desirable properties, such as superconductivity, can be greatly enhanced, or entirely new functionalities may emerge. Similar to in artificially engineered heterostructures, clean functional interfaces alternatively exist in electronically textured bulk materials. Electronic textures emerge spontaneously due to competing atomic-scale interactions, the control of which would enable a top-down approach for designing tunable intrinsic heterostructures. This is particularly attractive for correlated electron materials, where spontaneous heterostructures strongly affect the interplay between charge and spin degrees of freedom. Here we report high-resolution neutron spectroscopy on the prototypical strongly correlated metal CeRhIn5, revealing competition between magnetic frustration and easy-axis anisotropy—a well-established mechanism for generating spontaneous superstructures. Because the observed easy-axis anisotropy is field-induced and anomalously large, it can be controlled efficiently with small magnetic fields. The resulting field-controlled magnetic superstructure is closely tied to the formation of superconducting and electronic nematic textures in CeRhIn5, suggesting that in situ tunable heterostructures can be realized in correlated electron materials.
000859522 536__ $$0G:(DE-HGF)POF3-524$$a524 - Controlling Collective States (POF3-524)$$cPOF3-524$$fPOF III$$x0
000859522 536__ $$0G:(DE-HGF)POF3-6212$$a6212 - Quantum Condensed Matter: Magnetism, Superconductivity (POF3-621)$$cPOF3-621$$fPOF III$$x1
000859522 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x2
000859522 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x3
000859522 588__ $$aDataset connected to CrossRef
000859522 65027 $$0V:(DE-MLZ)SciArea-170$$2V:(DE-HGF)$$aMagnetism$$x0
000859522 65027 $$0V:(DE-MLZ)SciArea-120$$2V:(DE-HGF)$$aCondensed Matter Physics$$x1
000859522 65017 $$0V:(DE-MLZ)GC-1604-2016$$2V:(DE-HGF)$$aMagnetic Materials$$x0
000859522 693__ $$0EXP:(DE-MLZ)POLI-HEIDI-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)POLI-HEIDI-20140101$$6EXP:(DE-MLZ)SR9a-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$ePOLI: Polarized hot neutron diffractometer$$fSR9a$$x0
000859522 7001_ $$0P:(DE-HGF)0$$aZhang, S.$$b1
000859522 7001_ $$0P:(DE-HGF)0$$aLin, S.-Z.$$b2
000859522 7001_ $$0P:(DE-HGF)0$$aDas, Pinaki$$b3
000859522 7001_ $$0P:(DE-HGF)0$$aGhimire, N. J.$$b4
000859522 7001_ $$0P:(DE-HGF)0$$aBauer, E. D.$$b5
000859522 7001_ $$0P:(DE-HGF)0$$aThompson, J. D.$$b6
000859522 7001_ $$0P:(DE-HGF)0$$aHarriger, L. W.$$b7
000859522 7001_ $$0P:(DE-HGF)0$$aEhlers, G.$$b8
000859522 7001_ $$0P:(DE-HGF)0$$aPodlesnyak, A.$$b9
000859522 7001_ $$0P:(DE-HGF)0$$aBewley, R. I.$$b10
000859522 7001_ $$0P:(DE-Juel1)164291$$aSazonov, Andrew$$b11$$ufzj
000859522 7001_ $$0P:(DE-Juel1)164298$$aHutanu, V.$$b12$$ufzj
000859522 7001_ $$0P:(DE-HGF)0$$aRonning, F.$$b13
000859522 7001_ $$0P:(DE-HGF)0$$aBatista, C. D.$$b14
000859522 7001_ $$00000-0002-2943-0173$$aJanoschek, M.$$b15$$eCorresponding author
000859522 773__ $$0PERI:(DE-600)2206346-8$$a10.1038/s41567-018-0060-9$$gVol. 14, no. 5, p. 456 - 460$$n5$$p456 - 460$$tNature physics$$v14$$x1745-2481$$y2018
000859522 8564_ $$uhttps://juser.fz-juelich.de/record/859522/files/s41567-018-0060-9-1.pdf$$yRestricted
000859522 8564_ $$uhttps://juser.fz-juelich.de/record/859522/files/s41567-018-0060-9-1.pdf?subformat=pdfa$$xpdfa$$yRestricted
000859522 909CO $$ooai:juser.fz-juelich.de:859522$$pVDB$$pVDB:MLZ
000859522 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164291$$aForschungszentrum Jülich$$b11$$kFZJ
000859522 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164298$$aForschungszentrum Jülich$$b12$$kFZJ
000859522 9131_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000859522 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6212$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x1
000859522 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x2
000859522 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x3
000859522 9141_ $$y2018
000859522 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000859522 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT PHYS : 2017
000859522 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000859522 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000859522 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000859522 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000859522 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000859522 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000859522 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000859522 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000859522 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000859522 915__ $$0StatID:(DE-HGF)9920$$2StatID$$aIF >= 20$$bNAT PHYS : 2017
000859522 920__ $$lyes
000859522 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
000859522 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x1
000859522 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000859522 980__ $$ajournal
000859522 980__ $$aVDB
000859522 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000859522 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000859522 980__ $$aI:(DE-82)080009_20140620
000859522 980__ $$aUNRESTRICTED