001     859522
005     20210130000319.0
024 7 _ |a 10.1038/s41567-018-0060-9
|2 doi
024 7 _ |a 1745-2473
|2 ISSN
024 7 _ |a 1745-2481
|2 ISSN
024 7 _ |a WOS:000431301800017
|2 WOS
024 7 _ |a altmetric:30047608
|2 altmetric
037 _ _ |a FZJ-2019-00374
082 _ _ |a 530
100 1 _ |a Fobes, D. M.
|0 0000-0001-8252-2061
|b 0
|e First author
245 _ _ |a Tunable emergent heterostructures in a prototypical correlated metal
260 _ _ |a Basingstoke
|c 2018
|b Nature Publishing Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1549532416_22653
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a At the interface between two distinct materials, desirable properties, such as superconductivity, can be greatly enhanced, or entirely new functionalities may emerge. Similar to in artificially engineered heterostructures, clean functional interfaces alternatively exist in electronically textured bulk materials. Electronic textures emerge spontaneously due to competing atomic-scale interactions, the control of which would enable a top-down approach for designing tunable intrinsic heterostructures. This is particularly attractive for correlated electron materials, where spontaneous heterostructures strongly affect the interplay between charge and spin degrees of freedom. Here we report high-resolution neutron spectroscopy on the prototypical strongly correlated metal CeRhIn5, revealing competition between magnetic frustration and easy-axis anisotropy—a well-established mechanism for generating spontaneous superstructures. Because the observed easy-axis anisotropy is field-induced and anomalously large, it can be controlled efficiently with small magnetic fields. The resulting field-controlled magnetic superstructure is closely tied to the formation of superconducting and electronic nematic textures in CeRhIn5, suggesting that in situ tunable heterostructures can be realized in correlated electron materials.
536 _ _ |a 524 - Controlling Collective States (POF3-524)
|0 G:(DE-HGF)POF3-524
|c POF3-524
|f POF III
|x 0
536 _ _ |a 6212 - Quantum Condensed Matter: Magnetism, Superconductivity (POF3-621)
|0 G:(DE-HGF)POF3-6212
|c POF3-621
|f POF III
|x 1
536 _ _ |0 G:(DE-HGF)POF3-6G15
|f POF III
|x 2
|c POF3-6G15
|a 6G15 - FRM II / MLZ (POF3-6G15)
536 _ _ |a 6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)
|0 G:(DE-HGF)POF3-6G4
|c POF3-623
|f POF III
|x 3
588 _ _ |a Dataset connected to CrossRef
650 2 7 |a Magnetism
|0 V:(DE-MLZ)SciArea-170
|2 V:(DE-HGF)
|x 0
650 2 7 |a Condensed Matter Physics
|0 V:(DE-MLZ)SciArea-120
|2 V:(DE-HGF)
|x 1
650 1 7 |a Magnetic Materials
|0 V:(DE-MLZ)GC-1604-2016
|2 V:(DE-HGF)
|x 0
693 _ _ |a Forschungs-Neutronenquelle Heinz Maier-Leibnitz
|e POLI: Polarized hot neutron diffractometer
|f SR9a
|1 EXP:(DE-MLZ)FRMII-20140101
|0 EXP:(DE-MLZ)POLI-HEIDI-20140101
|5 EXP:(DE-MLZ)POLI-HEIDI-20140101
|6 EXP:(DE-MLZ)SR9a-20140101
|x 0
700 1 _ |a Zhang, S.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Lin, S.-Z.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Das, Pinaki
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Ghimire, N. J.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Bauer, E. D.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Thompson, J. D.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Harriger, L. W.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Ehlers, G.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Podlesnyak, A.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Bewley, R. I.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Sazonov, Andrew
|0 P:(DE-Juel1)164291
|b 11
|u fzj
700 1 _ |a Hutanu, V.
|0 P:(DE-Juel1)164298
|b 12
|u fzj
700 1 _ |a Ronning, F.
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Batista, C. D.
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Janoschek, M.
|0 0000-0002-2943-0173
|b 15
|e Corresponding author
773 _ _ |a 10.1038/s41567-018-0060-9
|g Vol. 14, no. 5, p. 456 - 460
|0 PERI:(DE-600)2206346-8
|n 5
|p 456 - 460
|t Nature physics
|v 14
|y 2018
|x 1745-2481
856 4 _ |u https://juser.fz-juelich.de/record/859522/files/s41567-018-0060-9-1.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/859522/files/s41567-018-0060-9-1.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:859522
|p VDB:MLZ
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)164291
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)164298
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-524
|2 G:(DE-HGF)POF3-500
|v Controlling Collective States
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-621
|2 G:(DE-HGF)POF3-600
|v In-house research on the structure, dynamics and function of matter
|9 G:(DE-HGF)POF3-6212
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
913 1 _ |a DE-HGF
|9 G:(DE-HGF)POF3-6G15
|x 2
|4 G:(DE-HGF)POF
|v FRM II / MLZ
|1 G:(DE-HGF)POF3-6G0
|0 G:(DE-HGF)POF3-6G15
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-600
|b Forschungsbereich Materie
|l Großgeräte: Materie
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-623
|2 G:(DE-HGF)POF3-600
|v Facility topic: Neutrons for Research on Condensed Matter
|9 G:(DE-HGF)POF3-6G4
|x 3
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT PHYS : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF >= 20
|0 StatID:(DE-HGF)9920
|2 StatID
|b NAT PHYS : 2017
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JCNS-FRM-II-20110218
|k JCNS-FRM-II
|l JCNS-FRM-II
|x 0
920 1 _ |0 I:(DE-Juel1)JCNS-2-20110106
|k JCNS-2
|l Streumethoden
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JCNS-FRM-II-20110218
980 _ _ |a I:(DE-Juel1)JCNS-2-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21