| Hauptseite > Publikationsdatenbank > Tunable emergent heterostructures in a prototypical correlated metal > print |
| 001 | 859522 | ||
| 005 | 20210130000319.0 | ||
| 024 | 7 | _ | |a 10.1038/s41567-018-0060-9 |2 doi |
| 024 | 7 | _ | |a 1745-2473 |2 ISSN |
| 024 | 7 | _ | |a 1745-2481 |2 ISSN |
| 024 | 7 | _ | |a WOS:000431301800017 |2 WOS |
| 024 | 7 | _ | |a altmetric:30047608 |2 altmetric |
| 037 | _ | _ | |a FZJ-2019-00374 |
| 082 | _ | _ | |a 530 |
| 100 | 1 | _ | |a Fobes, D. M. |0 0000-0001-8252-2061 |b 0 |e First author |
| 245 | _ | _ | |a Tunable emergent heterostructures in a prototypical correlated metal |
| 260 | _ | _ | |a Basingstoke |c 2018 |b Nature Publishing Group |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1549532416_22653 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a At the interface between two distinct materials, desirable properties, such as superconductivity, can be greatly enhanced, or entirely new functionalities may emerge. Similar to in artificially engineered heterostructures, clean functional interfaces alternatively exist in electronically textured bulk materials. Electronic textures emerge spontaneously due to competing atomic-scale interactions, the control of which would enable a top-down approach for designing tunable intrinsic heterostructures. This is particularly attractive for correlated electron materials, where spontaneous heterostructures strongly affect the interplay between charge and spin degrees of freedom. Here we report high-resolution neutron spectroscopy on the prototypical strongly correlated metal CeRhIn5, revealing competition between magnetic frustration and easy-axis anisotropy—a well-established mechanism for generating spontaneous superstructures. Because the observed easy-axis anisotropy is field-induced and anomalously large, it can be controlled efficiently with small magnetic fields. The resulting field-controlled magnetic superstructure is closely tied to the formation of superconducting and electronic nematic textures in CeRhIn5, suggesting that in situ tunable heterostructures can be realized in correlated electron materials. |
| 536 | _ | _ | |a 524 - Controlling Collective States (POF3-524) |0 G:(DE-HGF)POF3-524 |c POF3-524 |f POF III |x 0 |
| 536 | _ | _ | |a 6212 - Quantum Condensed Matter: Magnetism, Superconductivity (POF3-621) |0 G:(DE-HGF)POF3-6212 |c POF3-621 |f POF III |x 1 |
| 536 | _ | _ | |0 G:(DE-HGF)POF3-6G15 |f POF III |x 2 |c POF3-6G15 |a 6G15 - FRM II / MLZ (POF3-6G15) |
| 536 | _ | _ | |a 6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623) |0 G:(DE-HGF)POF3-6G4 |c POF3-623 |f POF III |x 3 |
| 588 | _ | _ | |a Dataset connected to CrossRef |
| 650 | 2 | 7 | |a Magnetism |0 V:(DE-MLZ)SciArea-170 |2 V:(DE-HGF) |x 0 |
| 650 | 2 | 7 | |a Condensed Matter Physics |0 V:(DE-MLZ)SciArea-120 |2 V:(DE-HGF) |x 1 |
| 650 | 1 | 7 | |a Magnetic Materials |0 V:(DE-MLZ)GC-1604-2016 |2 V:(DE-HGF) |x 0 |
| 693 | _ | _ | |a Forschungs-Neutronenquelle Heinz Maier-Leibnitz |e POLI: Polarized hot neutron diffractometer |f SR9a |1 EXP:(DE-MLZ)FRMII-20140101 |0 EXP:(DE-MLZ)POLI-HEIDI-20140101 |5 EXP:(DE-MLZ)POLI-HEIDI-20140101 |6 EXP:(DE-MLZ)SR9a-20140101 |x 0 |
| 700 | 1 | _ | |a Zhang, S. |0 P:(DE-HGF)0 |b 1 |
| 700 | 1 | _ | |a Lin, S.-Z. |0 P:(DE-HGF)0 |b 2 |
| 700 | 1 | _ | |a Das, Pinaki |0 P:(DE-HGF)0 |b 3 |
| 700 | 1 | _ | |a Ghimire, N. J. |0 P:(DE-HGF)0 |b 4 |
| 700 | 1 | _ | |a Bauer, E. D. |0 P:(DE-HGF)0 |b 5 |
| 700 | 1 | _ | |a Thompson, J. D. |0 P:(DE-HGF)0 |b 6 |
| 700 | 1 | _ | |a Harriger, L. W. |0 P:(DE-HGF)0 |b 7 |
| 700 | 1 | _ | |a Ehlers, G. |0 P:(DE-HGF)0 |b 8 |
| 700 | 1 | _ | |a Podlesnyak, A. |0 P:(DE-HGF)0 |b 9 |
| 700 | 1 | _ | |a Bewley, R. I. |0 P:(DE-HGF)0 |b 10 |
| 700 | 1 | _ | |a Sazonov, Andrew |0 P:(DE-Juel1)164291 |b 11 |u fzj |
| 700 | 1 | _ | |a Hutanu, V. |0 P:(DE-Juel1)164298 |b 12 |u fzj |
| 700 | 1 | _ | |a Ronning, F. |0 P:(DE-HGF)0 |b 13 |
| 700 | 1 | _ | |a Batista, C. D. |0 P:(DE-HGF)0 |b 14 |
| 700 | 1 | _ | |a Janoschek, M. |0 0000-0002-2943-0173 |b 15 |e Corresponding author |
| 773 | _ | _ | |a 10.1038/s41567-018-0060-9 |g Vol. 14, no. 5, p. 456 - 460 |0 PERI:(DE-600)2206346-8 |n 5 |p 456 - 460 |t Nature physics |v 14 |y 2018 |x 1745-2481 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/859522/files/s41567-018-0060-9-1.pdf |y Restricted |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/859522/files/s41567-018-0060-9-1.pdf?subformat=pdfa |x pdfa |y Restricted |
| 909 | C | O | |o oai:juser.fz-juelich.de:859522 |p VDB:MLZ |p VDB |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 11 |6 P:(DE-Juel1)164291 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 12 |6 P:(DE-Juel1)164298 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-520 |0 G:(DE-HGF)POF3-524 |2 G:(DE-HGF)POF3-500 |v Controlling Collective States |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Von Materie zu Materialien und Leben |1 G:(DE-HGF)POF3-620 |0 G:(DE-HGF)POF3-621 |2 G:(DE-HGF)POF3-600 |v In-house research on the structure, dynamics and function of matter |9 G:(DE-HGF)POF3-6212 |x 1 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
| 913 | 1 | _ | |a DE-HGF |9 G:(DE-HGF)POF3-6G15 |x 2 |4 G:(DE-HGF)POF |v FRM II / MLZ |1 G:(DE-HGF)POF3-6G0 |0 G:(DE-HGF)POF3-6G15 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-600 |b Forschungsbereich Materie |l Großgeräte: Materie |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Von Materie zu Materialien und Leben |1 G:(DE-HGF)POF3-620 |0 G:(DE-HGF)POF3-623 |2 G:(DE-HGF)POF3-600 |v Facility topic: Neutrons for Research on Condensed Matter |9 G:(DE-HGF)POF3-6G4 |x 3 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
| 914 | 1 | _ | |y 2018 |
| 915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NAT PHYS : 2017 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
| 915 | _ | _ | |a IF >= 20 |0 StatID:(DE-HGF)9920 |2 StatID |b NAT PHYS : 2017 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)JCNS-FRM-II-20110218 |k JCNS-FRM-II |l JCNS-FRM-II |x 0 |
| 920 | 1 | _ | |0 I:(DE-Juel1)JCNS-2-20110106 |k JCNS-2 |l Streumethoden |x 1 |
| 920 | 1 | _ | |0 I:(DE-82)080009_20140620 |k JARA-FIT |l JARA-FIT |x 2 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-Juel1)JCNS-FRM-II-20110218 |
| 980 | _ | _ | |a I:(DE-Juel1)JCNS-2-20110106 |
| 980 | _ | _ | |a I:(DE-82)080009_20140620 |
| 980 | _ | _ | |a UNRESTRICTED |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|