000859536 001__ 859536
000859536 005__ 20210130000321.0
000859536 037__ $$aFZJ-2019-00388
000859536 041__ $$aEnglish
000859536 1001_ $$0P:(DE-Juel1)164298$$aHutanu, V.$$b0$$eCorresponding author
000859536 1112_ $$a26th Annual Meeting of the German Crystallographic Society$$cEssen$$d2018-03-05 - 2018-03-08$$gDGK$$wGermany
000859536 245__ $$aCrystal chirality versus magnetic chirality in CsCuCl3 determined by neutron polarization analysis
000859536 260__ $$c2018
000859536 3367_ $$033$$2EndNote$$aConference Paper
000859536 3367_ $$2DataCite$$aOther
000859536 3367_ $$2BibTeX$$aINPROCEEDINGS
000859536 3367_ $$2DRIVER$$aconferenceObject
000859536 3367_ $$2ORCID$$aLECTURE_SPEECH
000859536 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1547733087_27089$$xAfter Call
000859536 520__ $$aThe concept of chirality, meaning left- or right-handedness, plays an essential role in symmetry properties of nature at all length scales from elementary particles to cosmic science. In material sciences, it is very important to understand the chirality in molecules, crystals and magnetic structures both from theoretical and experimental points of view. Chiral helimagnetic ordering, forming only right- or left-handed spiral magnetic structure, has attract much attention in the last time due to unique magnetic textures such as skyrmion and chiral magnetic soliton lattice [1, 2]. Therefore, it is very important to investigate the interplay between crystallographic and helimagnetic chirality. However, only very few experimental results on this interplay are reported up to now, due to the difficulty to synthesize homo-chiral single crystals, which consisting solely of right- or left-handed crystalline domains.Using novel two-step crystallization technique under stirring we succeeded in obtaining the cm-large ordered homo-chiral single crystals of CsCuCl3 with desired handedness [3]. Circular-polarized synchrotron radiation at SPring 8, J-Park was employed to determine the handedness of the crystal symmetry in different samples [4]. Below 10.5 K a proper-screw magnetic order with propagation vector k=(1/3,1/3, ±δ) with (δ ∼ 0.09) is formed in CsCuCl3. The magnetic chirality of the homo-chiral crystals was investigated using polarized single crystal diffractometer POLI at MLZ. Our experimental results revealed that the handedness of the magnetic helicity is coupled and directly controlled by the crystallographic lattice chirality [5]. The results could be understood in terms of Dzyaloshinskii-Morya interaction strongly coupled to the lattice, lifting the helix chiral degeneracy.References:1. S. Muhlbauer et al., Science 323, 915 (2009).2. Y. Togawa et al., Phys. Rev. Lett. 108, 107202 (2012).3. Y. Kousaka et al., J.Phys.: Conf. Series 502 012019 (2014).4. H. Ohsumi et al., Angew. Chem., Int. Ed. 52, 8718 (2013).5. Y. Kousaka et al., Phys. Rev. Materials, 1, 071402(R) (2017).
000859536 536__ $$0G:(DE-HGF)POF3-524$$a524 - Controlling Collective States (POF3-524)$$cPOF3-524$$fPOF III$$x0
000859536 536__ $$0G:(DE-HGF)POF3-6212$$a6212 - Quantum Condensed Matter: Magnetism, Superconductivity (POF3-621)$$cPOF3-621$$fPOF III$$x1
000859536 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x2
000859536 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x3
000859536 65027 $$0V:(DE-MLZ)SciArea-120$$2V:(DE-HGF)$$aCondensed Matter Physics$$x0
000859536 65027 $$0V:(DE-MLZ)SciArea-240$$2V:(DE-HGF)$$aCrystallography$$x1
000859536 65027 $$0V:(DE-MLZ)SciArea-170$$2V:(DE-HGF)$$aMagnetism$$x2
000859536 65017 $$0V:(DE-MLZ)GC-1604-2016$$2V:(DE-HGF)$$aMagnetic Materials$$x0
000859536 693__ $$0EXP:(DE-MLZ)POLI-HEIDI-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)POLI-HEIDI-20140101$$6EXP:(DE-MLZ)SR9a-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$ePOLI: Polarized hot neutron diffractometer$$fSR9a$$x0
000859536 7001_ $$0P:(DE-HGF)0$$aKousaka, Y.$$b1
000859536 7001_ $$0P:(DE-HGF)0$$aOhishi, K.$$b2
000859536 7001_ $$0P:(DE-HGF)0$$aKakurai, K.$$b3
000859536 7001_ $$0P:(DE-HGF)0$$aRoth, G.$$b4
000859536 909CO $$ooai:juser.fz-juelich.de:859536$$pVDB$$pVDB:MLZ
000859536 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164298$$aForschungszentrum Jülich$$b0$$kFZJ
000859536 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)164298$$aRWTH Aachen$$b0$$kRWTH
000859536 9131_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000859536 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6212$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x1
000859536 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x2
000859536 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x3
000859536 9141_ $$y2018
000859536 920__ $$lyes
000859536 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
000859536 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x1
000859536 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000859536 980__ $$aconf
000859536 980__ $$aVDB
000859536 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000859536 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000859536 980__ $$aI:(DE-82)080009_20140620
000859536 980__ $$aUNRESTRICTED