000859542 001__ 859542
000859542 005__ 20240529111757.0
000859542 037__ $$aFZJ-2019-00394
000859542 041__ $$aEnglish
000859542 1001_ $$0P:(DE-Juel1)142052$$aPütter, Sabine$$b0$$eCorresponding author$$ufzj
000859542 1112_ $$aFaculty Seminar$$cIndore$$d2018-12-15 - 2018-12-15$$wIndia
000859542 245__ $$aThin film fabrication by molecular beam epitaxyat the Jülich Centre for Neutron Science at Heinz Mayer-Leibnitz Zentrum in Garching, Germany$$f2018-12-15 -
000859542 260__ $$c2018
000859542 3367_ $$033$$2EndNote$$aConference Paper
000859542 3367_ $$2DataCite$$aOther
000859542 3367_ $$2BibTeX$$aINPROCEEDINGS
000859542 3367_ $$2ORCID$$aLECTURE_SPEECH
000859542 3367_ $$0PUB:(DE-HGF)31$$2PUB:(DE-HGF)$$aTalk (non-conference)$$btalk$$mtalk$$s1547733646_14709$$xInvited
000859542 3367_ $$2DINI$$aOther
000859542 520__ $$aRational design and implementation of new generations of functional materials for energy conversion and storage, requires better fundamental understanding of these systems along with the ability to predict their properties accurately. [1-3] Utilizing thin film systems, the knowledge of the driving parameters to obtain them in high quality is crucial [4]. Molecular Beam Epitaxy (MBE) proves to be a versatile method to grow high quality and high purity epitaxial films with low intrinsic defect concentrations and atomic-layer control.At the JCNS thin film laboratory, we run an oxide MBE system for the growth of various types of samples, i.e. “classical” magnetic thin films, transition metal oxide heterostructures or just thin gold films for soft matter studies, acting as defined surfaces. However, every sample system comes with its own challenges which makes thin film growth a research topic on its own.In the presentation, we will give examples for high quality metal and complex oxide thin film systems all fabricated in the JCNS thin film laboratory, like SrCoOx, TiOx, Fe4N or Cu/Fe multilayers. The focus lies on stoichiometry, morphology and thickness precision and detailed information about the possibilities of sample fabrication for users will be given.For quasi in-situ neutron reflectometry on thin films which are sensitive to ambient air a small versatile transfer chamber can be utilized for sample transfer and measurement from the MBE laboratory to the neutron instrument MARIA [5]. To show the functionality we determined the magnetic moment per atom of polycrystalline Co thin films of different thickness by utilizing PNR at room temperature in a magnetic field of 300 mT under UHV conditions. The films were thermally deposited at room temperature on 200 Å Pt/MgO(001). By our measurements we quantitatively determine the magnetic moment and confirm that it increases with Co thickness and approaches for thick films the bulk value.Both, the MBE setup and the transfer chamber may be booked in combination with an application for beam time at neutron instruments like MARIA via the MLZ proposal system.[1] R. Waser, Nanoelectronics and Information Technology, Wiley-VCH, 3rd Ed. (2012) [2] J. Mannhart and D. G. Schlom, Science 327, 1607 (2010)[3] A. Soumyanaryan, N. Reyren, A. Fert and C. Panagopoulos, Nature 539, 509 (2016) [4] S. Pütter et al., Appl. Phys. Lett. 110, 012403 (2017)[5] A. Syed Mohd et al., Rev. Sci. Instrum. 87, 123909 (2016)
000859542 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x0
000859542 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x1
000859542 536__ $$0G:(DE-HGF)POF3-6212$$a6212 - Quantum Condensed Matter: Magnetism, Superconductivity (POF3-621)$$cPOF3-621$$fPOF III$$x2
000859542 536__ $$0G:(DE-HGF)POF3-524$$a524 - Controlling Collective States (POF3-524)$$cPOF3-524$$fPOF III$$x3
000859542 65017 $$0V:(DE-MLZ)GC-1604-2016$$2V:(DE-HGF)$$aMagnetic Materials$$x0
000859542 65027 $$0V:(DE-MLZ)SciArea-170$$2V:(DE-HGF)$$aMagnetism$$x0
000859542 693__ $$0EXP:(DE-MLZ)MBE-MLZ-20151210$$5EXP:(DE-MLZ)MBE-MLZ-20151210$$eMBE-MLZ: Molecular Beam Epitaxy at MLZ$$x0
000859542 693__ $$0EXP:(DE-MLZ)MARIA-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)MARIA-20140101$$6EXP:(DE-MLZ)NL5N-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eMARIA: Magnetic reflectometer with high incident angle$$fNL5N$$x1
000859542 909CO $$ooai:juser.fz-juelich.de:859542$$pVDB$$pVDB:MLZ
000859542 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142052$$aForschungszentrum Jülich$$b0$$kFZJ
000859542 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x0
000859542 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x1
000859542 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6212$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x2
000859542 9131_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x3
000859542 9141_ $$y2018
000859542 920__ $$lyes
000859542 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
000859542 9201_ $$0I:(DE-Juel1)PGI-4-20110106$$kPGI-4$$lStreumethoden$$x1
000859542 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x2
000859542 980__ $$atalk
000859542 980__ $$aVDB
000859542 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000859542 980__ $$aI:(DE-Juel1)PGI-4-20110106
000859542 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000859542 980__ $$aUNRESTRICTED
000859542 981__ $$aI:(DE-Juel1)JCNS-2-20110106