001     859542
005     20240529111757.0
037 _ _ |a FZJ-2019-00394
041 _ _ |a English
100 1 _ |a Pütter, Sabine
|0 P:(DE-Juel1)142052
|b 0
|e Corresponding author
|u fzj
111 2 _ |a Faculty Seminar
|c Indore
|d 2018-12-15 - 2018-12-15
|w India
245 _ _ |a Thin film fabrication by molecular beam epitaxyat the Jülich Centre for Neutron Science at Heinz Mayer-Leibnitz Zentrum in Garching, Germany
|f 2018-12-15 -
260 _ _ |c 2018
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Talk (non-conference)
|b talk
|m talk
|0 PUB:(DE-HGF)31
|s 1547733646_14709
|2 PUB:(DE-HGF)
|x Invited
336 7 _ |a Other
|2 DINI
520 _ _ |a Rational design and implementation of new generations of functional materials for energy conversion and storage, requires better fundamental understanding of these systems along with the ability to predict their properties accurately. [1-3] Utilizing thin film systems, the knowledge of the driving parameters to obtain them in high quality is crucial [4]. Molecular Beam Epitaxy (MBE) proves to be a versatile method to grow high quality and high purity epitaxial films with low intrinsic defect concentrations and atomic-layer control.At the JCNS thin film laboratory, we run an oxide MBE system for the growth of various types of samples, i.e. “classical” magnetic thin films, transition metal oxide heterostructures or just thin gold films for soft matter studies, acting as defined surfaces. However, every sample system comes with its own challenges which makes thin film growth a research topic on its own.In the presentation, we will give examples for high quality metal and complex oxide thin film systems all fabricated in the JCNS thin film laboratory, like SrCoOx, TiOx, Fe4N or Cu/Fe multilayers. The focus lies on stoichiometry, morphology and thickness precision and detailed information about the possibilities of sample fabrication for users will be given.For quasi in-situ neutron reflectometry on thin films which are sensitive to ambient air a small versatile transfer chamber can be utilized for sample transfer and measurement from the MBE laboratory to the neutron instrument MARIA [5]. To show the functionality we determined the magnetic moment per atom of polycrystalline Co thin films of different thickness by utilizing PNR at room temperature in a magnetic field of 300 mT under UHV conditions. The films were thermally deposited at room temperature on 200 Å Pt/MgO(001). By our measurements we quantitatively determine the magnetic moment and confirm that it increases with Co thickness and approaches for thick films the bulk value.Both, the MBE setup and the transfer chamber may be booked in combination with an application for beam time at neutron instruments like MARIA via the MLZ proposal system.[1] R. Waser, Nanoelectronics and Information Technology, Wiley-VCH, 3rd Ed. (2012) [2] J. Mannhart and D. G. Schlom, Science 327, 1607 (2010)[3] A. Soumyanaryan, N. Reyren, A. Fert and C. Panagopoulos, Nature 539, 509 (2016) [4] S. Pütter et al., Appl. Phys. Lett. 110, 012403 (2017)[5] A. Syed Mohd et al., Rev. Sci. Instrum. 87, 123909 (2016)
536 _ _ |a 6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)
|0 G:(DE-HGF)POF3-6G4
|c POF3-623
|f POF III
|x 0
536 _ _ |0 G:(DE-HGF)POF3-6G15
|f POF III
|x 1
|c POF3-6G15
|a 6G15 - FRM II / MLZ (POF3-6G15)
536 _ _ |a 6212 - Quantum Condensed Matter: Magnetism, Superconductivity (POF3-621)
|0 G:(DE-HGF)POF3-6212
|c POF3-621
|f POF III
|x 2
536 _ _ |a 524 - Controlling Collective States (POF3-524)
|0 G:(DE-HGF)POF3-524
|c POF3-524
|f POF III
|x 3
650 1 7 |a Magnetic Materials
|0 V:(DE-MLZ)GC-1604-2016
|2 V:(DE-HGF)
|x 0
650 2 7 |a Magnetism
|0 V:(DE-MLZ)SciArea-170
|2 V:(DE-HGF)
|x 0
693 _ _ |0 EXP:(DE-MLZ)MBE-MLZ-20151210
|5 EXP:(DE-MLZ)MBE-MLZ-20151210
|e MBE-MLZ: Molecular Beam Epitaxy at MLZ
|x 0
693 _ _ |a Forschungs-Neutronenquelle Heinz Maier-Leibnitz
|e MARIA: Magnetic reflectometer with high incident angle
|f NL5N
|1 EXP:(DE-MLZ)FRMII-20140101
|0 EXP:(DE-MLZ)MARIA-20140101
|5 EXP:(DE-MLZ)MARIA-20140101
|6 EXP:(DE-MLZ)NL5N-20140101
|x 1
909 C O |o oai:juser.fz-juelich.de:859542
|p VDB:MLZ
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)142052
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-623
|2 G:(DE-HGF)POF3-600
|v Facility topic: Neutrons for Research on Condensed Matter
|9 G:(DE-HGF)POF3-6G4
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
913 1 _ |a DE-HGF
|9 G:(DE-HGF)POF3-6G15
|x 1
|4 G:(DE-HGF)POF
|v FRM II / MLZ
|1 G:(DE-HGF)POF3-6G0
|0 G:(DE-HGF)POF3-6G15
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-600
|b Forschungsbereich Materie
|l Großgeräte: Materie
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-621
|2 G:(DE-HGF)POF3-600
|v In-house research on the structure, dynamics and function of matter
|9 G:(DE-HGF)POF3-6212
|x 2
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-524
|2 G:(DE-HGF)POF3-500
|v Controlling Collective States
|x 3
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JCNS-FRM-II-20110218
|k JCNS-FRM-II
|l JCNS-FRM-II
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-4-20110106
|k PGI-4
|l Streumethoden
|x 1
920 1 _ |0 I:(DE-Juel1)JCNS-2-20110106
|k JCNS-2
|l Streumethoden
|x 2
980 _ _ |a talk
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JCNS-FRM-II-20110218
980 _ _ |a I:(DE-Juel1)PGI-4-20110106
980 _ _ |a I:(DE-Juel1)JCNS-2-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)JCNS-2-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21