000859546 001__ 859546
000859546 005__ 20210130000323.0
000859546 037__ $$aFZJ-2019-00398
000859546 041__ $$aEnglish
000859546 1001_ $$0P:(DE-Juel1)176326$$aThoma, Henrik$$b0$$eCorresponding author$$ufzj
000859546 245__ $$aThe Sign of the Dzyaloshinskii-Moriya Interaction in R-3c Symmetries$$f2017-09-04 - 2018-05-23
000859546 260__ $$c2018
000859546 300__ $$a90 p.
000859546 3367_ $$2DataCite$$aOutput Types/Supervised Student Publication
000859546 3367_ $$02$$2EndNote$$aThesis
000859546 3367_ $$2BibTeX$$aMASTERSTHESIS
000859546 3367_ $$2DRIVER$$amasterThesis
000859546 3367_ $$0PUB:(DE-HGF)19$$2PUB:(DE-HGF)$$aMaster Thesis$$bmaster$$mmaster$$s1547734401_16920
000859546 3367_ $$2ORCID$$aSUPERVISED_STUDENT_PUBLICATION
000859546 502__ $$aMasterarbeit, TUM: Technische Universität München, 2018$$bMasterarbeit$$cTUM: Technische Universität München$$d2018$$o2018-06-25
000859546 520__ $$aThe Dzyaloshinskii–Moriya (DM) interaction is a type of exchange-coupling between twospins that can have significant effects on the properties of magnetic materials. Its magnitudeis usually small, but its direction is often a decisive factor in the determination ofthe system’s chirality. A better understanding of the spin–orbit interaction and its implicationshave been a particular target of condensed matter research over the past decade:multiferroics, topological insulators, and Rashba and Dresselhaus spin–orbit coupling areall intensively studied. Recently in Nature Physics, V. Dmitrienko and colleagues havefound a way to measure the sign of the coupling vector, in order to determine the directionof the DM interaction, using sophisticated techniques based on synchrotron spectroscopy.In this Master thesis, the sign of the DM interaction is determined in hematite (alpha-Fe2O3)and rhodochrosite (MnCO3) single crystals with R-3c symmetry by means of polarizedneutron diffraction (PND).The theoretical basis for the DM interaction, based on a symmetry analysis in both compounds,is introduced. The polarized single crystal diffraction theory and its methodsare briefly presented. A dedicated PND setup, using a new symmetric-field high Tc superconductingmagnet with a maximal field of 2.2T in combination with a 3He polarizerand Mezei-type flipper, has been developed. The corresponding numerical simulationsand optimization for each component are presented and the complete setup is successfullytested and calibrated.This new PND setup is used to collected flipping-ratio (FR) data as function of the appliedmagnetic field and temperature for both compounds. The measured data were evaluatedaccording to the theoretical basis provided in the first part of this thesis. In addition, anadvanced approach for the reconstruction of maximum entropy spin density maps fromFR data is presented and appropriate software tools developed. Using these softwaretools, 3D spin density maps are build for the paramagnetic and antiferromangetic phase,in both compounds for the first time, revealing new features compared to the results fromconventional maximum entropy software.The analysis of the obtained spin density distribution maps showed clearly on one sidethat the origin of the magnetic scattering is not the localized moments at the atomic positions,but rather magnetic fields of the displaced orbitals. On the other side, 3D mapsallowed the extraction of the sign of the DM interaction.
000859546 536__ $$0G:(DE-HGF)POF3-524$$a524 - Controlling Collective States (POF3-524)$$cPOF3-524$$fPOF III$$x0
000859546 536__ $$0G:(DE-HGF)POF3-6212$$a6212 - Quantum Condensed Matter: Magnetism, Superconductivity (POF3-621)$$cPOF3-621$$fPOF III$$x1
000859546 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x2
000859546 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x3
000859546 65027 $$0V:(DE-MLZ)SciArea-120$$2V:(DE-HGF)$$aCondensed Matter Physics$$x0
000859546 65027 $$0V:(DE-MLZ)SciArea-240$$2V:(DE-HGF)$$aCrystallography$$x1
000859546 65027 $$0V:(DE-MLZ)SciArea-220$$2V:(DE-HGF)$$aInstrument and Method Development$$x2
000859546 65027 $$0V:(DE-MLZ)SciArea-170$$2V:(DE-HGF)$$aMagnetism$$x3
000859546 65017 $$0V:(DE-MLZ)GC-2002-2016$$2V:(DE-HGF)$$aInstrument and Method Development$$x0
000859546 65017 $$0V:(DE-MLZ)GC-1604-2016$$2V:(DE-HGF)$$aMagnetic Materials$$x1
000859546 693__ $$0EXP:(DE-MLZ)POLI-HEIDI-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)POLI-HEIDI-20140101$$6EXP:(DE-MLZ)SR9a-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$ePOLI: Polarized hot neutron diffractometer$$fSR9a$$x0
000859546 909CO $$ooai:juser.fz-juelich.de:859546$$pVDB$$pVDB:MLZ
000859546 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176326$$aForschungszentrum Jülich$$b0$$kFZJ
000859546 9131_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000859546 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6212$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x1
000859546 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x2
000859546 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x3
000859546 9141_ $$y2018
000859546 920__ $$lyes
000859546 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
000859546 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x1
000859546 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000859546 9201_ $$0I:(DE-588b)36241-4$$kTUM$$lTechnische Universität München$$x3
000859546 980__ $$amaster
000859546 980__ $$aVDB
000859546 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000859546 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000859546 980__ $$aI:(DE-82)080009_20140620
000859546 980__ $$aI:(DE-588b)36241-4
000859546 980__ $$aUNRESTRICTED