000859547 001__ 859547
000859547 005__ 20210130000323.0
000859547 037__ $$aFZJ-2019-00399
000859547 041__ $$aEnglish
000859547 1001_ $$0P:(DE-Juel1)164298$$aHutanu, Vladimir$$b0$$eCorresponding author$$ufzj
000859547 1112_ $$aCNAM Condensed Matter Colloquium$$cMaryland$$d2018-09-27 - 2018-09-27$$wUnited States
000859547 245__ $$aNew single crystal diffractometer with polarized neutrons POLI at MLZ as a versatile tool for the detailed investigation of magnetic structures$$f2018-09-27 - 
000859547 260__ $$c2018
000859547 3367_ $$033$$2EndNote$$aConference Paper
000859547 3367_ $$2DataCite$$aOther
000859547 3367_ $$2BibTeX$$aINPROCEEDINGS
000859547 3367_ $$2ORCID$$aLECTURE_SPEECH
000859547 3367_ $$0PUB:(DE-HGF)31$$2PUB:(DE-HGF)$$aTalk (non-conference)$$btalk$$mtalk$$s1547734440_14709$$xInvited
000859547 3367_ $$2DINI$$aOther
000859547 520__ $$aPolarized neutron diffraction (PND) is a powerful method to investigate magnetic structures. It gives unique access to contributions from nuclear and magnetic scattering, their interference terms, and magnetic chirality and permits to distinguish between them. In contrast to the non-polarized neutron diffraction, where the scattered intensity depends as square on the magnetic structure factor, PND has a linear nuclear-magnetic interference term as part of the scattered intensity. This increases the precision in the determination of the ordered magnetic moment for at least one order of magnitude. Born in the late 50s of the last century and developed over decades by a small groups of devoted experts, PND became nowadays a wide spread, well established, and recognized technique to answer difficult scientific questions about the detailed magnetic ordering in topic materials, often intractable with other methods. Recently newest member of such instrumentation family POLI (Polarization Investigator) was built and commissioned at the neutron source “Heinz Maier-Leibnitz” (MLZ) in Garching Germany. POLI is the first instrument routinely using 3He spin filters both to produce and to analyze the neutron polarization in combination with double focusing non-polarized monochromators. This results in a relatively high flux of the polarized neutrons of the short wavelength and improved resolution in comparison with other similar instruments. Three different experimental techniques are implemented (or under development) on POLI: a) Spherical neutron polarimetry (SNP), called also 3D polarization analysis, using the third generation polarimeter device Cryopad, b) classical flipping ratio (FR) technique in applied magnetic field and c) non-polarized neutron diffraction under extreme conditions (high/low temperatures, magnetic/electric fields, pressure and their combination). We will present recent examples of using these techniques on POLI for the detailed determination of the magnetic structures in multiferroics, superconductors, heavy fermion compound and other interesting magnetic materials.
000859547 536__ $$0G:(DE-HGF)POF3-524$$a524 - Controlling Collective States (POF3-524)$$cPOF3-524$$fPOF III$$x0
000859547 536__ $$0G:(DE-HGF)POF3-6212$$a6212 - Quantum Condensed Matter: Magnetism, Superconductivity (POF3-621)$$cPOF3-621$$fPOF III$$x1
000859547 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x2
000859547 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x3
000859547 65017 $$0V:(DE-MLZ)GC-1604-2016$$2V:(DE-HGF)$$aMagnetic Materials$$x0
000859547 65017 $$0V:(DE-MLZ)GC-2002-2016$$2V:(DE-HGF)$$aInstrument and Method Development$$x1
000859547 65027 $$0V:(DE-MLZ)SciArea-120$$2V:(DE-HGF)$$aCondensed Matter Physics$$x0
000859547 65027 $$0V:(DE-MLZ)SciArea-240$$2V:(DE-HGF)$$aCrystallography$$x1
000859547 65027 $$0V:(DE-MLZ)SciArea-220$$2V:(DE-HGF)$$aInstrument and Method Development$$x2
000859547 65027 $$0V:(DE-MLZ)SciArea-170$$2V:(DE-HGF)$$aMagnetism$$x3
000859547 693__ $$0EXP:(DE-MLZ)POLI-HEIDI-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)POLI-HEIDI-20140101$$6EXP:(DE-MLZ)SR9a-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$ePOLI: Polarized hot neutron diffractometer$$fSR9a$$x0
000859547 909CO $$ooai:juser.fz-juelich.de:859547$$pVDB$$pVDB:MLZ
000859547 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164298$$aForschungszentrum Jülich$$b0$$kFZJ
000859547 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)164298$$aRWTH Aachen$$b0$$kRWTH
000859547 9131_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000859547 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6212$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x1
000859547 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x2
000859547 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x3
000859547 9141_ $$y2018
000859547 920__ $$lyes
000859547 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
000859547 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x1
000859547 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000859547 980__ $$atalk
000859547 980__ $$aVDB
000859547 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000859547 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000859547 980__ $$aI:(DE-82)080009_20140620
000859547 980__ $$aUNRESTRICTED