000859552 001__ 859552
000859552 005__ 20240529111757.0
000859552 037__ $$aFZJ-2019-00404
000859552 041__ $$aEnglish
000859552 1001_ $$0P:(DE-Juel1)159309$$aSyed Mohd, Amir$$b0$$eCorresponding author$$ufzj
000859552 1112_ $$a22nd International Colloquium on magnetic films and surfaces$$cKrakow$$d2015-07-12 - 2015-07-17$$gICMFS$$wPoland
000859552 245__ $$aMagnetic structure in epitaxial Fe/Cu and Fe/FePt multilayers Probed by Polarised Neutron Reflectivity
000859552 260__ $$c2015
000859552 3367_ $$033$$2EndNote$$aConference Paper
000859552 3367_ $$2BibTeX$$aINPROCEEDINGS
000859552 3367_ $$2DRIVER$$aconferenceObject
000859552 3367_ $$2ORCID$$aCONFERENCE_POSTER
000859552 3367_ $$2DataCite$$aOutput Types/Conference Poster
000859552 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1547735013_7247$$xAfter Call
000859552 520__ $$aThe study of exchange coupling effect between magnetic thin films is important due to the underlying fundamental Physics and possibility to develop functional nanostructures for their potential use in memory devices and sensors. This effect results in interlayer coupling (e.g. antiferromagnetic or biquadratic) between ferromagnetic film separated by a non- magnetic metal or semiconductor film [1-3]. The exchange coupling also emerges as exchange spring effect when soft ferromagnetic film (e.g. Fe or Permalloy) is coupled with hard ferromagnetic film (e.g. L10-FePt) [4]. It has been demonstrated theoretically that in case of exchange spring effect, magnetization of soft ferromagnet is pinned at the interface and form a spiral structure under external magnetic field [5]. It is in fact difficult to obtain the magnetic profile in exchange coupled multilayers using conventional magnetometric technique such as SQUID or MOKE. However, polarised neutron reflectivity (PNR) technique is unique to obtain depth dependent magnetization structure in magnetic thin films and multilayers. In this work we intend to use PNR technique to probe the magnetization structure in Fe layers in epitaxial Fe/Cu and Fe/FePt multilayers prepared using molecular beam epitaxy (MBE).We have deposited [Fe(1.5 nm)/Cu(2.5 nm)]10 multilayer on Cu (100) buffer layer epitaxially grown on Si (100) substrate at ~280 K. In-situ reflection high energy electron diffraction (RHEED) measurements were performed during deposition to monitor the epitaxial growth. SQUID together with PNR measurements were done to probe the interlayer coupling and magnetization structure. The temperature dependent SQUID measurement rules out the antiferromagnetic coupling between Fe layers. PNR measurements were performed at saturation, and after decreasing the field close to remanence. The spin flip PNR measurement around remnant reveals that magnetization in Fe layer is non-collinear.In order to study the exchange spring behaviour in Fe/FePt multilayers, first we deposited epitaxial FePt thin films on MgO(100) substrate at ~500 K. Ex-situ x-ray diffraction measurement confirms the L10 structure of the FePt film which has hard magnetic behaviour [6]. PNR measurements on Fe/FePt multilayers are underway, and the results of Fe/Cu and Fe/FePt multilayers will be discussed in the presentation.AcknowledgmentsI, SYED MOHD A., acknowledge the help received from Harald Schneider and Alexandra Steffen. References1. Grünberg P., Schreiber R., Pang Y., Brodsky M. B., and Sowers H., Phys. Rev. Lett. 57, 2442, (1986).2. Vaz C. A. F., Bland J. A. C., Lauhoff G., Rep. Prog. Phys. 71, 056501, (2008).3. Strijkers G. J., Kohlhepp J. T., Swagten H. J. M., and de Jonge W. J. M., Phys. Rev. Lett. 84, 1812,(2000).4. Fullerton E. E., Jiang J. S., Grimsditch M., Sowers C. H., and Bader S. D., Phys. Rev. B 58, 12193,(1998).5. Asti G., Ghidini M., Pellicelli R., Pernechele C., Solzi M., Albertini F., Casoli F., Fabbrici S., ParetiL., Phys. Rev. B 73, 094406, (2008).6. Skomski R., Manchanda P., Kumar P., Balamurugan B., Kashyap A., and Sellmyer D. J., IEEE 49,3215, (2013).
000859552 536__ $$0G:(DE-HGF)POF3-6212$$a6212 - Quantum Condensed Matter: Magnetism, Superconductivity (POF3-621)$$cPOF3-621$$fPOF III$$x0
000859552 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x1
000859552 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x2
000859552 536__ $$0G:(DE-HGF)POF3-524$$a524 - Controlling Collective States (POF3-524)$$cPOF3-524$$fPOF III$$x3
000859552 65027 $$0V:(DE-MLZ)SciArea-170$$2V:(DE-HGF)$$aMagnetism$$x0
000859552 65017 $$0V:(DE-MLZ)GC-1604-2016$$2V:(DE-HGF)$$aMagnetic Materials$$x0
000859552 693__ $$0EXP:(DE-MLZ)MBE-MLZ-20151210$$5EXP:(DE-MLZ)MBE-MLZ-20151210$$eMBE-MLZ: Molecular Beam Epitaxy at MLZ$$x0
000859552 693__ $$0EXP:(DE-MLZ)MARIA-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)MARIA-20140101$$6EXP:(DE-MLZ)NL5N-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eMARIA: Magnetic reflectometer with high incident angle$$fNL5N$$x1
000859552 7001_ $$0P:(DE-Juel1)142052$$aPütter, Sabine$$b1$$ufzj
000859552 7001_ $$0P:(DE-Juel1)130821$$aMattauch, Stefan$$b2$$ufzj
000859552 7001_ $$0P:(DE-Juel1)158075$$aKoutsioumpas, Alexandros$$b3$$ufzj
000859552 7001_ $$0P:(DE-HGF)0$$aGeprägs, Stephan$$b4
000859552 7001_ $$0P:(DE-Juel1)130572$$aBrückel, Thomas$$b5$$ufzj
000859552 909CO $$ooai:juser.fz-juelich.de:859552$$pVDB$$pVDB:MLZ
000859552 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159309$$aForschungszentrum Jülich$$b0$$kFZJ
000859552 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142052$$aForschungszentrum Jülich$$b1$$kFZJ
000859552 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130821$$aForschungszentrum Jülich$$b2$$kFZJ
000859552 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158075$$aForschungszentrum Jülich$$b3$$kFZJ
000859552 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130572$$aForschungszentrum Jülich$$b5$$kFZJ
000859552 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6212$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x0
000859552 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x1
000859552 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x2
000859552 9131_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x3
000859552 920__ $$lyes
000859552 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
000859552 9201_ $$0I:(DE-Juel1)PGI-4-20110106$$kPGI-4$$lStreumethoden$$x1
000859552 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x2
000859552 980__ $$aposter
000859552 980__ $$aVDB
000859552 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000859552 980__ $$aI:(DE-Juel1)PGI-4-20110106
000859552 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000859552 980__ $$aUNRESTRICTED
000859552 981__ $$aI:(DE-Juel1)JCNS-2-20110106