001     859558
005     20240529111757.0
037 _ _ |a FZJ-2019-00410
041 _ _ |a English
100 1 _ |a Syed Mohd, Amir
|0 P:(DE-Juel1)159309
|b 0
|e Corresponding author
|u fzj
111 2 _ |a JCNS Workshop: Trends and Perspectives in Neutron Instrumentation: Probing Structure and Dynamics at Interfaces and Surfaces
|g JCNS Workshop 2017
|c Tutzing
|d 2017-10-10 - 2017-10-13
|w Germany
245 _ _ |a Connecting MARIA with the MBE system: Polarized Neutron Reflectivity of thin Co films in UHV conditions using portable transport chamber
260 _ _ |c 2017
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1547735184_14709
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a MARIA is a dedicated instrument for neutron reflectometry of thin films. However, due to limited space a UHV system for thin film growth and in-situ measurements cannot be placed on-site. Hence, up to now thin films which are sensitive to ambient air have been fabricated in the MBE system located in the thin film laboratory nearby and were covered by protecting cap layers in-situ. However these layers may change the physical properties of the sample, which is undesirable and prevents from further manipulation of the sample.Recently, we have solved this problem by developing a handy mini UHV transport chamber which is capable for both, sample transfer and polarized neutron reflectivity (PNR) measurements in UHV [1]. Our solution consists of a DN CF-40 cube with two opposing sapphire windows for the neutron beam, a combined non evaporable getter and ion pump for keeping the vacuum, a wobble stick, which is needed for in-situ sample transfer and also serves as sample holder for samples of up to 1 cm2 and a valve for sample exchange by mounting the chamber on the MBE system. The pressure in the transfer chamber is kept in the 10−10 mbar range during transport and PNR measurement.In this work, we present PNR of Co thin films with varying thickness deposited on Pt buffered MgO(001) substrates. The samples were prepared in the MBE and measured at MARIA under UHV condition using transport chamber at room temperature. During the measurement a field of 100 mT was applied parallel to the sample surface. We found that Co thin film is magnetically dead below 5 nm. However, magnetic moment in Co thin films evolves with increasing thickness and approaches to the bulk value (1.7 μB) above 3 nm. In addition, we also measured PNR of Co thin films after exposing with the ambient air. The fitting of the PNR data shows that surface of the Co film gets oxidised in air but remains free from contamination in UHV transport chamber.This project is part of the nanoscience foundry and fine analysis project (NFFA, www.nffa.eu) and has received funding from the EU’s H2020 research and innovation programme under grant agreement N. 654360.[1] A. Syed Mohd et al., Rev. Sci. Instrum., 87, 123909 (2016).
536 _ _ |a 6212 - Quantum Condensed Matter: Magnetism, Superconductivity (POF3-621)
|0 G:(DE-HGF)POF3-6212
|c POF3-621
|f POF III
|x 0
536 _ _ |a 6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)
|0 G:(DE-HGF)POF3-6G4
|c POF3-623
|f POF III
|x 1
536 _ _ |0 G:(DE-HGF)POF3-6G15
|f POF III
|x 2
|c POF3-6G15
|a 6G15 - FRM II / MLZ (POF3-6G15)
536 _ _ |a 524 - Controlling Collective States (POF3-524)
|0 G:(DE-HGF)POF3-524
|c POF3-524
|f POF III
|x 3
650 2 7 |a Magnetism
|0 V:(DE-MLZ)SciArea-170
|2 V:(DE-HGF)
|x 0
650 1 7 |a Magnetic Materials
|0 V:(DE-MLZ)GC-1604-2016
|2 V:(DE-HGF)
|x 0
693 _ _ |0 EXP:(DE-MLZ)MBE-MLZ-20151210
|5 EXP:(DE-MLZ)MBE-MLZ-20151210
|e MBE-MLZ: Molecular Beam Epitaxy at MLZ
|x 0
693 _ _ |a Forschungs-Neutronenquelle Heinz Maier-Leibnitz
|e MARIA: Magnetic reflectometer with high incident angle
|f NL5N
|1 EXP:(DE-MLZ)FRMII-20140101
|0 EXP:(DE-MLZ)MARIA-20140101
|5 EXP:(DE-MLZ)MARIA-20140101
|6 EXP:(DE-MLZ)NL5N-20140101
|x 1
700 1 _ |a Pütter, Sabine
|0 P:(DE-Juel1)142052
|b 1
|u fzj
700 1 _ |a Mattauch, Stefan
|0 P:(DE-Juel1)130821
|b 2
|u fzj
700 1 _ |a Brückel, Thomas
|0 P:(DE-Juel1)130572
|b 3
|u fzj
909 C O |o oai:juser.fz-juelich.de:859558
|p VDB:MLZ
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)159309
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)142052
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130821
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130572
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-621
|2 G:(DE-HGF)POF3-600
|v In-house research on the structure, dynamics and function of matter
|9 G:(DE-HGF)POF3-6212
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-623
|2 G:(DE-HGF)POF3-600
|v Facility topic: Neutrons for Research on Condensed Matter
|9 G:(DE-HGF)POF3-6G4
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
913 1 _ |a DE-HGF
|9 G:(DE-HGF)POF3-6G15
|x 2
|4 G:(DE-HGF)POF
|v FRM II / MLZ
|1 G:(DE-HGF)POF3-6G0
|0 G:(DE-HGF)POF3-6G15
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-600
|b Forschungsbereich Materie
|l Großgeräte: Materie
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-524
|2 G:(DE-HGF)POF3-500
|v Controlling Collective States
|x 3
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JCNS-FRM-II-20110218
|k JCNS-FRM-II
|l JCNS-FRM-II
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-4-20110106
|k PGI-4
|l Streumethoden
|x 1
920 1 _ |0 I:(DE-Juel1)JCNS-2-20110106
|k JCNS-2
|l Streumethoden
|x 2
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JCNS-FRM-II-20110218
980 _ _ |a I:(DE-Juel1)PGI-4-20110106
980 _ _ |a I:(DE-Juel1)JCNS-2-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)JCNS-2-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21