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ARTICLE INFO ABSTRACT

The climate-growth response of specific sites and species is one of the main research subjects in classic tree ring
studies. Traditional sampling approaches therefore aim at maximizing the climate signal of the analyzed tree
ring series, which is typically achieved by focusing on dominant trees or on sites located in particularly tem-
perature or moisture limited environments. However, there is increasing evidence that these selective sampling
strategies cannot yield chronologies that are representative for entire populations. One promising approach to
gain a deeper understanding of forest dynamics and climate-growth responsiveness is the analysis of climate
signal ranges among trees. This individualistic approach requires random sampling and the integration of in-
formation on small-scale heterogeneities in site and tree characteristics. Here, we analyze the climate-growth
response of 144 Norway spruce trees (Picea abies Karst.) on difference levels of data aggregation. The aim of our
study is to investigate the relevance of small-scale heterogeneities in site conditions, particularly in soil water
supply, for the detected climate-growth signal. We identify soil water supply and site characteristics, which
indirectly modify the water availability for trees, as dominating growth factors across scales. The driest sites
show the strongest climate-growth reaction, while the growth response of wetter sites is weak or even insig-
nificant. Therefore, we conclude that integrating small-scale information on site characteristics, particularly on
soil water supply, can help to gain a deeper understanding of species specific growth limitations.
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1. Introduction

Investigating the climate-growth response of specific sites and spe-
cies is one of the main research subjects in classic tree ring studies.
Hence, site and tree selection typically aim at maximizing the climate
signal in the inspected growth chronology (Nehrbass-Ahles et al., 2014;
Primicia et al., 2015; Sullivan and Csank, 2016). Respectively, many
researchers follow a selective sampling focusing either on “dominant,
large and healthy trees” (Nehrbass-Ahles et al., 2014) or on sites located
in particularly temperature or moisture limited environments (Esper
et al., 2007; Sullivan and Csank, 2016).

However, even though selective sampling is acknowledged as ap-
propriate approach for climate growth analysis and climate re-
constructions (Nehrbass-Ahles et al., 2014), there is increased evidence
that the resulting tree ring chronologies are likely to miss representa-
tiveness for the tree population (Carrer, 2011; Nehrbass-Ahles et al.,
2014; Sullivan and Csank, 2016), because the climate sensitivity of
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individual trees largely depends on site and tree characteristics (Carrer,
2011; Galvan et al., 2014; Primicia et al., 2015). Recent studies show
that the growth responsiveness of trees to climate is related to forest
management and composition (Pretzsch and Dieler, 2011; Primicia
et al., 2015), physical and chemical soil properties (Braun et al., 2010;
Pretzsch and Dieler, 2011; Tromp-van Meerveld and McDonnell, 2006;
Ibanez et al., 2018), soil water state (Ashiq and Anand, 2016; Helama
et al., 2016; Jiang et al., 2016; Lévesque et al., 2014; Linares et al.,
2010; Primicia et al., 2015; Zhang et al., 2018), canopy structure
(Adams and Kolb, 2004; Linares et al., 2010; Martin-Benito et al., 2008;
Primicia et al., 2015), tree to tree competition (Linares et al., 2010;
Primicia et al., 2015; Gleason et al., 2017; Piutti and Cescatti, 1997),
tree size (Carrer and Urbinati, 2004; Linares et al., 2010), and tree age
as a proxy for other, size related effects (Carrer and Urbinati, 2004;
Primicia et al., 2015).

Consequently, researchers increasingly seek for randomized sam-
pling strategies that allow for both (1) the extraction of a mean climate-
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Fig. 1. WU chronology (a) and correlation between respective RWI values and monthly/seasonal temperatures, precipitation sums, and simulated root-zone pF
values (b). Horizontal black lines in Fig. 1b represent the 95% significance level.

growth response and (2) the investigation of the range of climate sig-
nals among trees (Carrer, 2011; Nehrbass-Ahles et al., 2014; Sullivan
and Csank, 2016). However, to draw ecological conclusions from het-
erogeneities in the individual climate-growth response of trees, a
comprehensive sampling design including quantitative data on tree and
site characteristics is indispensable (Babst et al., 2013; Nehrbass-Ahles
et al., 2014).

In this study, we analyze tree ring chronologies of 144 Norway
spruce trees (Picea abies Karst) on different levels of data aggregation
with the aim to identify the relevance of small-scale heterogeneities in
site conditions for the detected climate-growth signal. Since Norway
spruce is known to be particularly vulnerable to drought (Boden et al.,
2014; Bouriaud et al., 2005; Neuwirth, 2010; Zang et al., 2014, 2012),
we focus on small-scale variabilities in simulated soil water supply and
on site characteristics, which indirectly modify the water availability
for trees. Further potentially growth relevant factors we consider in our
analysis are soil nutrient states and pH level. The study area is an even-
aged Norway spruce plantation in the Eifel National Park (western
Germany). Hence, age-related modifications of the climate-growth
signal do not play a role in our study.

124

2. Material and methods
2.1. Study area and data base

This study was conducted in the 27 ha Wiistebach experimental test
site, which belongs to the TERENO Eifel/Lower Rhine Valley
Observatory and is located in the Eifel National Park close to the
German Belgian border (Bogena et al., 2018). The area is forested with
Norway spruce that were planted in the late 1940ies (Etmann, 2009). In
2013, one quarter of the trees (8.6 ha) was removed to investigate the
effects of deforestation on hydrological and biogeochemical cycling
(Bogena et al., 2014). Altitudes range from 595 m a.s.l. in the north to
628 m a.s.l. in the south. While the hillslopes are dominated by shallow
Cambisols and Planosols, Gleysols and Histosols have developed in the
Riparian zone (a map of the study area is given in the results section).
The soil texture is mainly silty clay loam with a medium to high coarse
material fraction (Gottselig et al., 2017). The mean annual temperature
and precipitation sum for the period 1970-2000 are 7.9°C (DWD
weather station Kall-Sistig in 13.1 km distance to the test-site) and
1280 mm (DWD weather station Kalterherberg in 9.6 km distance to the
test-site), respectively.

We analyzed tree ring data of 48 microsites with slightly varying
soil water supply to explore small-scale variations in the climate-growth
relations. Soil moisture was monitored with the TERENO sensor net-
work SoilNet (Bogena et al., 2010). SoilNet provides catchment-wide
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Fig. 2. SN chronologies (a) and correlation between respective RWI values and monthly/seasonal temperatures and precipitation sums. Black horizontal lines

represent the 95% significance level.

information on soil water dynamics in 5, 20 and 50 cm depths with
15 min resolution since 2009 using ECH20 EC-5 and ECH20 5TE sen-
sors (Decagon Devices, Pullman, WA, USA). We used the soil hydro-
logical model HYDRUS-1D (Simtinek et al., 2013). to generate long-
term information on soil water supply from the SoilNet data, First, we
inversely estimated the soil hydraulic properties for each of our micro-
sites as described in Rabbel et al. (2018) using SoilNet data from 2010
to 2012 for the model calibration and data from 2013 to 2015 for the
model validation. Based on the validated model setup we conducted
long-term simulations of soil water supply in terms of root-zone pres-
sure heads for the period 1951 to 2000. Daily climate and precipitation
data for the long-term simulations were taken from the DWD weather
stations Kall-Sistig and Kalterherberg, respectively. We considered the
effect of forest growth on the water balance by using a dynamic leaf
area index (LAI) as obtained from long-term simulations with the pro-
cess-based forest hydrological model LWF-Brook90 (Hammel and
Kennel, 2001). For more detailed information on the climate data
processing and simulated LAI, we refer to Cornelissen (2016). Through
logarithmic transformation and aggregation of the daily modelled
pressure heads we obtained mean monthly root-zone pF values for each
of our microsites. As additional growth relevant factors, we considered
planting density and soil properties as microsite characteristics in our
study. In this context, we made use of the comprehensive spatially
distributed biogeochemistry dataset of the Wiistebach (Gottselig et al.,
2017). For this study we selected information on soil horizon depths
and horizon-wise bulk density, pH and C-, N- and P-contents.

2.2. Tree ring data and chronology building

We selected our microsites with regard to the existing SoilNet
measuring locations to draw the closest possible link between tree ring
data and local site conditions. However, since our sampling campaign

took place after the deforestation event in 2013, Gleysol sites could not
be considered in this study. Each microsite consists of three trees in
direct proximity (< 10m) to one of the SoilNet stations. We used a
HAGLOF increment corer with 5mm diameter to extract two opposite
cores at breast height per tree. The sample preparation followed stan-
dard procedures (Stokes and Smiley, 1968). Ring widths were measured
at the dendrochronological lab DeLaWi Tree Ring Analyses (Windeck,
Germany) using the moveable object table Lintab 5 (Rinntech, Hei-
delberg, Germany) and a stereo microscope (Carl Zeiss, Jena, Germany)
in a measuring accuracy of 10 um. Synchronization and cross-dating
were carried out with the software tools TSAP-WIN (Rinn, 2003) and
COFECHA (Holmes, 1983). Tree mean curves (TMC) were calculated
with TSAP-WIN. We detrended each TMC using a high-pass filter based
on binomially weighted 5-year running means (Schweingruber, 1988)
to remove age-related trends and emphasize inter-annual growth var-
iations. Indices (RWI) were calculated as ratio between actual tree ring
widths and the filtered value. In total, we considered 144 trees to create
48 SoilNet related microsite chronologies (SN) and one regional
chronology across all microsites in the Wiistebach catchment (WU). To
avoid data inconsistencies, we excluded the juvenile phase from our
investigations and thus only used the period 1970 to 2000 for further
analyses. More recent years were not considered, because of a multi-
year data gap in the Kall-Sistig weather station data. Applying the
hierarchical cluster analysis after Ward, which has already been proven
to provide a clear distinction of growth clusters in previous studies (e.g.
Friedrichs et al., 2009), we used the squared Euclidian distance as a
measure of similarity to detect SN chronologies (RWI series) with si-
milar growth dynamics. These were aggregated to respective cluster
chronologies (CL) using arithmetic means.
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Fig. 3. Correlation between SN climate signal strength (Pearson’s r) and si-
mulated root-zone pF (a), planting density (b), P,Os concentration (c), and NO3._
concentration (d). The dashed black lines indicate the 95% significance level for
the observed climate-growth relations. T-signal: temperature signal as resulting
from the correlation of the SN chronologies and mean monthly/seasonal tem-
peratures; P-signal: precipitation signal as resulting from the correlation of the
SN chronologies and monthly/seasonal precipitation sums; reference periods
for the illustrated climate signals: JJAp: Juli to August of the previous year;
SONp: September to November of the previous year.

2.3. Statistical analysis

We analyzed the climate-growth relationships in the Wiistebach
catchment at different levels of data aggregation using Pearson’s pro-
duct-moment correlations. WU, CL and SN chronologies were corre-
lated with monthly temperature and precipitation data and mean
monthly root-zone pF over a 18-month window from May of the pre-
vious year (denoted with the index p) until October of the current year
of ring formation. Additionally, we considered temperature means,
precipitation sums and mean simulated root-zone pF for the periods
March-May (MAM), June-August (JJA), September-November (SON),
April-October (VEG), and annual values (CAL) for the previous and
current year of ring formation.

We correlated the climate signal strength (Pearson’s r) observed on
the SN level with the respective microsite characteristics (exposition,
inclination, planting density, mean root-zone pF, and soil bio-
geochemistry) to identify the relevance of site characteristics for the
detected climate signal. We conducted this analysis (1) for all 48 SN
microsites across the Wiistebach catchment and (2) for each growth
cluster separately.

Since the cluster characteristics considered in this study typically
exhibit non-normal distributions, we used U-tests instead of T-tests to
identify statistically significant differences in the mean cluster char-
acteristics and therewith to explain the cluster formation itself. In this
context, we applied the software package R (R Core Team, 2018).
Significance for both Pearson’s correlations and U-tests was tested on
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the 95% significance level (p < 0.05).
3. Results and discussion
3.1. Regional climate-growth relations

For the WU chronology (Fig. 1a), we found significant negative
correlations between mean monthly and seasonal temperatures and
RWI for JULp, JJAp and VEGp (Fig. 1b), whereas the strong correlation
of RWI and JULp (r=-0.55) seems to dominate the observed seasonal
temperature-growth relations. Significant positive correlations with
RWI were observed for OCTp, JJAp, SONp, and VEGp precipitation
sums (Fig. 1b). In this case, the strong correlation of RWI and OCTp
(r = 0.61) dominates the observed significant correlation of RWI and
SONp. The sensitivity to high summer temperatures and low pre-
cipitation of the previous year is typical for Norway spruce in lower
altitudes (Fischer and Neuwirth, 2012; Hartl-Meier et al., 2014;
Makinen et al., 2002; van der Maaten-Theunissen et al., 2013). The
interplay between positive correlations of RWI with precipitation and
negative correlations with temperature for the same periods (JJAp and
VEGp) suggests that radial growth rates in the Wiistebach catchment
are mainly controlled by water availability. This finding is supported by
the significant negative correlations of RWI with the mean monthly
(JULp, AUGp, OCTp, NOVp), seasonal (JJAp, SONp, VEGp), and annual
(CALp) root-zone pF (Fig. 1b) and in line with other studies reporting
the particularly high vulnerability of Norway spruce to drought (Boden
et al., 2014; Bouriaud et al., 2005; Neuwirth, 2010; Zang et al., 2012,
2014).

3.2. Climate growth relations across microsites

The SN chronologies show a considerable scatter in RWI values
(Fig. 2a). Nevertheless, the general growth dynamic is similar among
SN chronologies. For most of the SN series, we observed negative RWI
peaks in the years 1976 and 1995, which have already been identified
as negative pointer years for the Wiistebach area in a previous study
(Thomas et al., 2018). Particularly high ranges of RWI values among SN
chronologies were found for the years 1970 (0.31), 1977 (0.36), and
1996 (0.33) and hence for years that follow negative pointer years
(Thomas et al., 2018). This indicates that the recovery of growth rates
after drought years depends on small-scale environmental conditions.

The monthly/seasonal climate signals among SN chronologies are
strongly scattered (Fig. 2b), which we attribute to small-scale vari-
abilities in the microsite conditions (e.g. soil properties).

We found significant negative correlations between the SN chron-
ologies’ temperature signals and the simulated summer root-zone pF of
the previous year (JJAp; Fig. 3a). Hence, drier microsites react stronger
to high summer temperatures than wetter microsites, which was also
found by other studies on the regional scale (Ashiq and Anand, 2016;
Helama et al., 2016; Jiang et al., 2016; Lévesque et al., 2014; Zhang
et al., 2016). Significant negative correlations with seasonal tempera-
ture signals (JJAp, VEGp) were also found for the local planting density
(Fig. 3b).This effect indicates an increasing competition for soil water
with increasing number of trees per ground area, which was already
observed by Linares et al., (2010) and Primicia et al. (2015).

Interestingly, we did not find any correlations between the pre-
cipitation signal of the SN chronologies and water related microsite
characteristics. Instead, seasonal precipitation signals (SONp, VEGp)
were significantly related to the microsite’s soil N and P states. We
observed decreasing precipitation signals with increasing plant avail-
able P (P,0s) indicating that insufficient P supply increases the drought
vulnerability of Norway spruce (Fig. 3c).

Nitrate N (NOs ), in contrast, shows a significantly positive corre-
lation with the precipitation signal strength (Fig. 3d). One possible
explanation is that the enhanced N levels in the Wiistebach catchment
as indicated by C/N ratios well below 25 (Gundersen et al., 1998)



L. Rabbel et al.

a)
linkage distance

Dendrochronologia 52 (2018) 123-130

1.0
0.8
0.6
0.4
0.2
0.0

b)

FAO Soil Units

Cambisol Microsites

Cambisol/Planosol A Cluster!
Gleysol {;3 Cluster2
s,
- Histosol Z%e Cluster 3
SN locations not
Planosol s

used in this study

Symbols

Wiistebach stream
E Deforestation Area

0,2 Kilometers

0 005 01

Fig. 4. Dendrogram as resulting from the hierarchical cluster analysis after Ward (a) and spatial distribution of the clusters within the Wiistebach catchment (b).

pF
4.5 A Cluster 1

4 4

Cluster 2

Cluster 3

35 -/_/\ /‘/\

range
2.5 | —— mean
2  +—r—T——TTTT—TTTT T T T T T T T T
JFMAMIJJASOND JFMAMJJASOND JFMAMIJJASOND
month month month

Fig. 5. Simulated mean monthly soil water supply (black line) and inter-annual variation of the simulated mean monthly soil water supply (grey) for the period
1970-2000 by growth cluster. Field capacity and permanent wilting point are generally assumed for pF 2-2.5 and 4.2, respectively.

reduce fine-root growth and limit the uptake of other nutrients. The
resulting negative effects of excess N on tree growth and vitality have
been described before and may result in a decreased tolerance against
soil-related stress-factors (Braun et al., 2010; Kazda, 1990; Mohren
et al., 1986; Puhe, 2003; Seith et al., 1996; Thelin et al., 1998). Hence,
it seems reliable that microsites of excess N supply are more vulnerable
to water stress than microsites with a more balanced nutrient supply.

3.3. Cluster formation and characteristics

Our cluster analysis resulted in three primary growth clusters with
18 (CL1), 21 (CL2), and 9 SN members (CL3) (Fig. 4a). The spatial
proximity of the SN sites was not important for cluster formation
(Fig. 4b). Instead, the site characteristics of the clusters mainly differed
in the mean simulated soil water supply (Fig. 5). However, while the
mean simulated root-zone pF of cluster 1 was significantly higher than

that of cluster 2 and 3, no significant difference was found between the
moisture regimes of cluster 2 and 3.

Nevertheless, the cluster’s climate signal strength was clearly con-
nected to the observed gradient in the mean cluster’s soil water supply:
The cluster chronology of the driest cluster (CL1, Fig. 6a) showed the
strongest correlation with monthly/seasonal mean temperatures (JULp,
JJAp, CALp, VEGp), while the wettest cluster (CL3) did not show sig-
nificant temperature-growth relations at all (Fig. 6b). Also, the tem-
perature signal of CL1 was even 0.06 (JULp) to 0.08 (VEGp) points
stronger than that of the mean WU chronology. This indicates that our
small-scale clustering approach can help to improve the extraction of a
regional climate signal.

The precipitation signal of the cluster chronologies was also mod-
ified by mean soil water supply. However, the effect was not as strong
as for the temperature signal. Even though the precipitation signal
strength decreased with increasing root-zone pF, all cluster
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chronologies still showed significant correlations with mean seasonal
precipitation sums (JJAp, SONp, VEGp). The OCTp precipitation signal
was highly significant (p < 0.001) for all cluster chronologies and the
only signal appearing to be independent from the soil moisture regime.

Internal relations between SN climate signal and microsite char-
acteristics varied among clusters. The analyzed microsite characteristics
within the clusters were found to be independent from each other and
also from absolute soil water states. In contrast to our findings on the
regional scale, cluster internal SN temperature signals were not corre-
lated with the simulated soil water supply. Instead, temperature signals
significantly correlated with the planting density (Fig. 6a), which re-
flects the above described increased competition for water resources
under drought, and with the bulk density of the B horizon (Fig. 6b). The
increasing climate sensitivity with increasing bulk density can be ex-
plained, because Norway spruce is known to preferably root humus-rich
soil horizons. High skeleton contents and clay-rich B horizons as present
in the Wiistebach catchment hamper the development of the deeper
rooting system, which is particularly important to compensate water
shortage under drought (Puhe, 2003).

The cluster internal SN precipitation signals were significantly
correlated to soil NOs. (positive correlation, Fig. 6¢) and P,Os (negative
correlation, Fig. 6d). Furthermore, increasing sensitivities to monthly/
seasonal precipitation sums can be observed with increasing bulk
densities (Fig. 6e), decreasing soil depth (Fig. 6f) and ongoing soil
acidification (Fig. 6g). We found a noteworthy negative correlation
between soil depth and drought sensitivity, which is reasonable as total
soil water storage increases with increasing soil depth. This finding is
also in correspondence to other studies (e.g. Tromp-van Meerveld and
McDonnell, 2006), who explained patterns in forest basal area with
spatial variations in soil depth. The negative effect of soil acidification
on root growth and thus on the potential water uptake of Norway
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spruce has been reviewed by Puhe (2003) and explains the negative
correlation between soil pF and SN precipitation signal.

Apart from the mean soil water supply, we did not find significant
differences in the microsite characteristics among clusters. Therefore,
we attribute the observed cluster-internal dependencies of climate-
growth relations from microsite characteristics to the underlying cluster
moisture regimes.

4. Conclusion: soil water supply as a dominating growth factor
across scales

In this study, we explored the growth response of Norway spruce
along a small-scale gradient of soil water supply. We used different
levels of data aggregation to identify the relevance of the soil water
regime and other microsite characteristics on the climate-growth rela-
tions in the Wiistebach catchment. We found significant impacts of soil
water supply across all levels of data aggregation.

On the regional scale (WU chronology), the mean seasonal simu-
lated root-zone pF showed similar (SONp, CALp) or slightly weaker
(JJAp, VEGp) correlations with tree growth than the mean seasonal
precipitation sums. However, on the monthly scale, growth variability
was better explained by soil water supply than by monthly precipitation
sums (Fig. 1b). This emphasizes the function of the soil as a buffer of
precipitation and is in line with other studies comparing the growth
response of trees to soil related wetness indices and to precipitation
sums alone (Scharnweber et al., 2011; van der Maaten-Theunissen
et al., 2013).

Across all 48 microsites (SN chronologies), the temperature-growth
response was directly (simulated root-zone pF) and indirectly (planting
density) related to local soil water supply. Cluster-internally, correla-
tions between simulated root-zone pF and climate growth response
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signal: precipitation signal as resulting from the correla-
tion of the SN chronologies and monthly/seasonal pre-
cipitation sums; reference periods for the illustrated cli-
mate signals: OCTp: October of the previous year; JJAp:
Juli to August of the previous year; SONp: September to
November of the previous year; VEGp: April to October of
the previous year.
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were not observed. However, we identified the local soil water supply
to be the most dominating factor in the formation of the growth clus-
ters. Hence, cluster-internal feedbacks between SN climate signal
strength and microsite characteristics already represent a second level
of signal modification. Significant correlations of cluster-internal SN
climate-signals were found for planting density, soil depth, and bulk
density and hence for site characteristics that indirectly modify the
availability of soil water for trees (Fig. 7).

In conclusion, we identified soil water supply as a dominating
growth factor across scales. Even though the growth response across
our microsites showed a high scatter, which indicates that a clear cli-
mate signal extraction is nearly impossible on that scale (also cf. Carrer,
2011) our clustering approach helped to close the gap between the
individualistic growth-response of forest trees and the regional climate
signal. Therefore, we are confident that integrating small-scale in-
formation on site characteristics, particularly on soil water supply, can
help to gain a deeper understanding of species specific growth limita-
tions.
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