000859589 001__ 859589
000859589 005__ 20240708132854.0
000859589 0247_ $$2doi$$a10.1016/j.jallcom.2018.10.239
000859589 0247_ $$2ISSN$$a0925-8388
000859589 0247_ $$2ISSN$$a1873-4669
000859589 0247_ $$2WOS$$aWOS:000453826200119
000859589 037__ $$aFZJ-2019-00438
000859589 082__ $$a540
000859589 1001_ $$00000-0002-6527-3961$$aAlahmari, Fatimah$$b0$$eCorresponding author
000859589 245__ $$aLayered copper thioaluminate K2Cu3AlS4: Synthesis, crystal structure, characterization and solid-state 27Al and 39K NMR studies
000859589 260__ $$aAmsterdam [u.a.]$$bScienceDirect$$c2019
000859589 3367_ $$2DRIVER$$aarticle
000859589 3367_ $$2DataCite$$aOutput Types/Journal article
000859589 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1547818134_26260
000859589 3367_ $$2BibTeX$$aARTICLE
000859589 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000859589 3367_ $$00$$2EndNote$$aJournal Article
000859589 520__ $$aThe first example of alkali/transition metal thioaluminates K2Cu3AlS4 was synthesized and characterized. The compound crystallizes in the orthorhombic space group Pnna (no. 52), with unit cell parameters a = 5.471 (6) Å, b = 5.468 (6) Å and c = 13.111 (1) Å, within a pseudo-tetragonal lattice. Its crystal structure consists of 2D [Cu3AlS4]2- polyanionic anti-PbO type layers, in which Al and Cu atoms share the atomic positions, separated by K+ cations. The (Cu/Al) atomic positions are tetrahedrally coordinated by S atoms, whereas K atoms are surrounded by eight S atoms in a cubic fashion. The coordination environments of the Al and K cations were confirmed by solid-state 27Al and 39K NMR, respectively. The title compound is a semiconductor with a direct bandgap of 2.96 eV, and thermally stable up to 550 °C
000859589 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000859589 588__ $$aDataset connected to CrossRef
000859589 7001_ $$0P:(DE-HGF)0$$aDey, Somnath$$b1
000859589 7001_ $$0P:(DE-HGF)0$$aEmwas, Abdul-Hamid$$b2
000859589 7001_ $$0P:(DE-Juel1)174080$$aDavaasuren, Bambar$$b3$$ufzj
000859589 7001_ $$0P:(DE-HGF)0$$aRothenberger, Alexander$$b4
000859589 773__ $$0PERI:(DE-600)2012675-X$$a10.1016/j.jallcom.2018.10.239$$gVol. 776, p. 1041 - 1047$$p1041 - 1047$$tJournal of alloys and compounds$$v776$$x0925-8388$$y2019
000859589 909CO $$ooai:juser.fz-juelich.de:859589$$pVDB
000859589 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174080$$aForschungszentrum Jülich$$b3$$kFZJ
000859589 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000859589 9141_ $$y2019
000859589 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ ALLOY COMPD : 2017
000859589 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000859589 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000859589 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000859589 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000859589 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000859589 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000859589 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000859589 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000859589 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000859589 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000859589 920__ $$lyes
000859589 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000859589 980__ $$ajournal
000859589 980__ $$aVDB
000859589 980__ $$aI:(DE-Juel1)IEK-1-20101013
000859589 980__ $$aUNRESTRICTED
000859589 981__ $$aI:(DE-Juel1)IMD-2-20101013