| Hauptseite > Publikationsdatenbank > Unstable Slip Pulses and Earthquake Nucleation as a Nonequilibrium First-Order Phase Transition > print |
| 001 | 859605 | ||
| 005 | 20210130000330.0 | ||
| 024 | 7 | _ | |a 10.1103/PhysRevLett.121.234302 |2 doi |
| 024 | 7 | _ | |a 0031-9007 |2 ISSN |
| 024 | 7 | _ | |a 1079-7114 |2 ISSN |
| 024 | 7 | _ | |a 1092-0145 |2 ISSN |
| 024 | 7 | _ | |a 2128/21264 |2 Handle |
| 024 | 7 | _ | |a pmid:30576171 |2 pmid |
| 024 | 7 | _ | |a WOS:000452683000010 |2 WOS |
| 024 | 7 | _ | |a altmetric:45213684 |2 altmetric |
| 037 | _ | _ | |a FZJ-2019-00454 |
| 082 | _ | _ | |a 530 |
| 100 | 1 | _ | |a Brener, Efim A. |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
| 245 | _ | _ | |a Unstable Slip Pulses and Earthquake Nucleation as a Nonequilibrium First-Order Phase Transition |
| 260 | _ | _ | |a College Park, Md. |c 2018 |b APS |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1547729279_2871 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a The onset of rapid slip along initially quiescent frictional interfaces, the process of “earthquake nucleation,” and dissipative spatiotemporal slippage dynamics play important roles in a broad range of physical systems. Here we first show that interfaces described by generic friction laws feature stress-dependent steady-state slip pulse solutions, which are unstable in the quasi-1D approximation of thin elastic bodies. We propose that such unstable slip pulses of linear size L∗ and characteristic amplitude are “critical nuclei” for rapid slip in a nonequilibrium analogy to equilibrium first-order phase transitions and quantitatively support this idea by dynamical calculations. We then perform 2D numerical calculations that indicate that the nucleation length L∗ exists also in 2D and that the existence of a fracture mechanics Griffith-like length LG |
| 536 | _ | _ | |a 144 - Controlling Collective States (POF3-144) |0 G:(DE-HGF)POF3-144 |c POF3-144 |f POF III |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef |
| 700 | 1 | _ | |a Aldam, Michael |0 P:(DE-HGF)0 |b 1 |
| 700 | 1 | _ | |a Barras, Fabian |0 P:(DE-HGF)0 |b 2 |
| 700 | 1 | _ | |a Molinari, Jean-François |0 P:(DE-HGF)0 |b 3 |
| 700 | 1 | _ | |a Bouchbinder, Eran |0 P:(DE-HGF)0 |b 4 |
| 773 | _ | _ | |a 10.1103/PhysRevLett.121.234302 |g Vol. 121, no. 23, p. 234302 |0 PERI:(DE-600)1472655-5 |n 23 |p 234302 |t Physical review letters |v 121 |y 2018 |x 1079-7114 |
| 856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/859605/files/PhysRevLett.121.234302.pdf |
| 856 | 4 | _ | |y OpenAccess |x pdfa |u https://juser.fz-juelich.de/record/859605/files/PhysRevLett.121.234302.pdf?subformat=pdfa |
| 909 | C | O | |o oai:juser.fz-juelich.de:859605 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-HGF)0 |
| 913 | 1 | _ | |a DE-HGF |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-140 |0 G:(DE-HGF)POF3-144 |2 G:(DE-HGF)POF3-100 |v Controlling Collective States |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
| 914 | 1 | _ | |y 2018 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
| 915 | _ | _ | |a American Physical Society Transfer of Copyright Agreement |0 LIC:(DE-HGF)APS-112012 |2 HGFVOC |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PHYS REV LETT : 2017 |
| 915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b PHYS REV LETT : 2017 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
| 915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)PGI-2-20110106 |k PGI-2 |l Theoretische Nanoelektronik |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)PGI-2-20110106 |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|