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The onset of rapid slip along initially quiescent frictional interfaces, the process of “earthquake

nucleation,” and dissipative spatiotemporal slippage dynamics play important roles in a broad range of

physical systems. Here we first show that interfaces described by generic friction laws feature stress-

dependent steady-state slip pulse solutions, which are unstable in the quasi-1D approximation of thin

elastic bodies. We propose that such unstable slip pulses of linear size L� and characteristic amplitude are

“critical nuclei” for rapid slip in a nonequilibrium analogy to equilibrium first-order phase transitions and

quantitatively support this idea by dynamical calculations. We then perform 2D numerical calculations that

indicate that the nucleation length L� exists also in 2D and that the existence of a fracture mechanics

Griffith-like length LG < L� gives rise to a richer phase diagram that features also sustained slip pulses.

DOI: 10.1103/PhysRevLett.121.234302

Introduction.—The spatiotemporal dynamics of frictional

interfaces (“faults”), formed when two deformable bodies

come into contact, are central to a broad range of physical

systems [1–3]. Two basic recurring themes, which still resist

a complete theoretical understanding, are rapid slip nucle-

ation and the rupture modes of faults. The former addresses

the conditions underwhich slowlydrivenor strictly quiescent

faults spontaneously develop rapid slip, the so-called “earth-

quake nucleation” problem [4–21]. The latter addresses the

ways inwhich such faults rupture once rapid slip nucleates, in

particular, the existence and properties of expanding crack-

like rupture vs spatially compact pulse modes [21–33].

Earthquake nucleation has been extensively studied

[4–21]. It has been shown that for a broad class of interfaces

where the frictional resistance decreases with increasing slip

velocity, i.e., in the velocity-weakening regime, nucleation

emerges from a frictional instability [4–21]. This nucleation

scenario, controlled by a critical nucleation length Lc [34],

assumes that external driving forces bring the interface or part

of it into the destabilizing velocity-weakening regime, which

is valid only above some typically lowslip velocity. Far less is

known about nucleation from the quiescent, nearly locked

state that is generically velocity strengthening [46].

Once rapid slip commences, the spatiotemporal dynam-

ics of frictional interfaces are largely determined by the

mode of rupture propagation along them, e.g., [2,7]. While

expanding cracklike rupture has been thought to be the

dominant mode of rupture, it has been suggested that some

earthquake data might be explained in terms of slip pulses

[47]. This suggestion has triggered various 2D analyses

[22–26] that demonstrated the existence of slip pulses for a

class of friction models that feature aging or healing in the

absence of slip and sufficiently strong velocity-weakening

behavior. Recently, the existence of steady-state slip pulses

in a class of generalized friction models has been demon-

strated in the framework of the quasi-1D approximation of

thin elastic bodies in contact [33]. Yet, the degree of

generality of such slip pulses and, most importantly, their

dynamic stability and dimensionality dependence remain

rather poorly understood.

In this Letter, we establish a surprising connection

between the two apparently disconnected classes of prob-

lems described above; we show that interfaces described by

generic friction laws feature unstable steady-state slip

pulses in the quasi-1D approximation. These unstable slip

pulses of linear size L� and characteristic amplitude are

hypothesized to serve as “critical nuclei” for the onset of

rapid slip along quiescent interfaces, in a nonequilibrium

analogy to equilibrium first-order phase transitions; that is,

we propose an intimate relation between unstable slip

pulses and earthquake nucleation.

These ideas are first quantitatively supported by dynami-

cal quasi-1D calculations. Then the nucleation length L� is
shown to exist also when 2D elastodynamics are consid-

ered, but the existence of a fracture mechanics [48,49]

Griffith-like length LG gives rise to sustained slip pulses.

The analysis culminates in a 2D phase diagram [21],

highlighting the roles of unstable slip pulses in earthquake

nucleation as a nonequilibrium first-order phase transition.

Spatially extended frictional systems and generic friction

laws.—The dynamics of spatially extended frictional sys-

tems emerge from the coupling between the bulk dynamics
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of the deformable bodies in contact and the frictional

interaction of the bodies along the contact interface. Bulk

dynamics are described by continuum momentum balance

ρüðr; tÞ ¼ ∇ · σðr; tÞ, where ρ is the mass density, u and r

are the đ-dimensional displacement and position vector

fields, respectively, t is time, and σ is the stress tensor field.

σ is typically related to u through Hooke’s law, resulting in

bulk linear elastodynamics.

The interfacial constitutive (friction) law relates the slip

velocity (the relative interfacial velocity), interfacial

stresses, and the structural state of the interface. In

đ ¼ 2, when sliding takes place along x at y ¼ 0, the slip

velocity reads vðx; tÞ≡ _uxðx; y ¼ 0þ; tÞ − _uxðx; y ¼ 0−; tÞ
(þ and − correspond to the upper and lower bodies,

respectively), and the friction stress reads τðx; tÞ≡
σxyðx; y ¼ 0; tÞ. The structural state of the interface

is described by an internal-state field ϕðx; tÞ, which

satisfies its own evolution equation. Finally, τðv;ϕÞ ¼
σ sgnðvÞfðjvj;ϕÞ, where σ ≡ −σyyðx; y ¼ 0; tÞ is the inter-
facial normal stress and fðjvj;ϕÞ is the friction coefficient,

and _ϕ ¼ gðjvj;ϕÞ. This is the rate-and-state friction con-

stitutive framework [1,4,50,51].

We use constitutive functions fðjvj;ϕÞ and gðjvj;ϕÞ that
capture thegeneric properties of frictional interfaces. First,we

set gðjvj;ϕÞ ¼ 1 − jvjϕ=D [1,4,34,50–52], where ϕ repre-

sents the typical age or maturity of contact asperities that

compose the spatially extended interface, such that ϕ ¼ t
accounts for frictional aging or healing in the absence of slip,

v ¼ 0, and ϕ ¼ D=jvj accounts for frictional rejuvenation
over characteristic slip D in the presence of slip, v ≠ 0.

Second, we use the function fðjvj;ϕ ¼ D=jvjÞ [20,34]

plotted in Fig. 1; this N-shaped steady-state friction curve

features a velocity-strengthening branch at extremely small

v’s, essentially representing quiescent or locked interfacial

states, a velocity-weakening branch at intermediate v’s, and
another velocity-strengthening branch beyond a high-vmini-

mum [34,53–55]. This generic friction curve is supported by

extensive experiments and theoretical considerations [54].

The existence and properties of 1D steady-state

pulses.—The coupled interface-bulk problem defined

above poses great mathematical challenges. To simplify

things, we first consider two long and thin linear elastic

bodies of height H in frictional contact, such that ρü ¼
∇ · σ reduces to [31,53]

HḠðc−2∂tt − ∂xxÞuðx; tÞ ¼ τd − τ½vðx; tÞ;ϕðx; tÞ�; ð1Þ

where u≡ ux, Ḡ and c are the effective shear modulus and

wave speed [31,53], respectively, and τd is a constant

driving stress (see Fig. 1). Quasi-1D traveling steady-state

solutions then satisfy [34]

ḠHc−1ð1 − β2Þβ−1dvðξÞ=dξ ¼ τd − τ½vðξÞ;ϕðξÞ�; ð2Þ

βcdϕðξÞ=dξ ¼ ϕðξÞvðξÞ=D − 1; ð3Þ

where we defined a comoving coordinate ξ≡ x − βct,
integrated out u, and eliminated partial time derivatives.

Steady-state pulses, featuring a steadily traveling slip-

ping region (cf. Fig. 2), can be thought of as composed of

interacting rupture and healing fronts that propagate at the

same velocity. Such fronts connect velocity-strengthening

(i.e., stable) solutions of τðjvj;ϕ ¼ D=jvjÞ ¼ τd; see Fig. 1.

In particular, in steady-state rupture fronts, the homo-

geneous Vvs state invades the homogeneous Vstick state

[27,30,32,33,53,56], both defined in Fig. 1, and vice versa

for steady-state healing fronts. We found these solutions
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FIG. 1. A generic N-shaped steady-state friction coeffi-

cient f ¼ τ=σ vs slip velocity v, featuring a minimum at

ðVmin; τmin=σÞ. The solid horizontal line is the driving shear

stress τd > τmin, intersecting the N-shaped friction law at three

velocities: Vstick ≪ Vmin on the extremely low-v velocity-

strengthening branch, Vvw < Vmin on the velocity-weakening

branch, and Vvs > Vmin on the high-v velocity-strengthening

branch. Note that the actual numbers used in the figure are

characteristic of some laboratory experiments [34], but the results

derived from them below are relevant to a broad range of

materials and physical situations.
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FIG. 2. A slip pulse solution corresponding to τd in Fig. 1,

featuring a typical width L� (see the text for an exact definition)

and a maximal slip velocity vm [34]. Length is measured in units

of the velocity-weakening nucleation length Lc [20,31,34] and

velocity in units of Vmin. (Inset) The solution in the ϕ − v plane

(the black circles correspond to the Vstick and Vvs fixed points and

the brown square to the Vvw fixed point; see Fig. 1).
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and calculated their dimensionless propagation velocity

βr;hðτdÞ (for rupture and healing fronts, respectively), as

shown in the inset in Fig. 3(b). The two functions exhibit

opposite trends and intersect at τ� [33].

At τd ¼ τ�, rupture and healing fronts propagate at the

same velocity [βrðτ�Þ ¼ βhðτ�Þ] and hence can be super-

imposed without interaction to form a pulse of infinite

width. As τd is increased above τ�, the two fronts interact,

leading to pulses of finite width L�ðτdÞ and propagation

velocity βpðτdÞ. The existence of such pulses is explicitly

demonstrated in Fig. 2. In Fig. 3(a), we show the pulse

width L�ðτdÞ, defined as the distance between the points at

which the slip velocity drops to Vvw (cf. Fig. 1). A scaling

theory predicts that L�=Lc diverges as
ffiffiffiffi

τ�
p

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

τd − τ�
p

for

τd → τ� [34], which is shown to quantitatively agree with

the numerical results [dashed yellow line in Fig. 3(a)]. The

maximal slip velocity vmðτdÞ (see the definition in Fig. 2),

plotted in the inset in Fig. 3(a), and the propagation velocity

of slip pulses βpðτdÞ, plotted in Fig. 3(b), also increase with
decreasing τd.
Finally, we note that, while it is physically intuitive and

appealing to think of slip pulses as interacting rupture and

healing fronts, the existence of the latter is not a necessary

condition for the existence of the former. That is, slip pulses

exist also for steady-state friction laws that do not feature a

minimum, for which steady-state fronts—and consequently

a finite τ� at which L� diverges—do not exist [34].

Unstable pulses as critical nuclei in a nonequilibrium

first-order phase transition.—We next perform a numerical

stability analysis of slip pulses. That is, we use steady-state

pulse solutions as initial conditions and perturb them by

slightly stretching or compressing the comoving coordinate

ξ; see Fig. 4(a). Here, steady-state conditions are not

enforced; i.e., we transform the equations to the comoving

frame of reference without eliminating partial time deriv-

atives [34] and track the time evolution of perturbations; see

Figs. 4(b) and 4(c). It is observed that the perturbation with

L > L� grows in amplitude and expands in size, while the

perturbation with L < L� decays. That is, 1D steady-state

pulses are intrinsically unstable.
The unstable nature of 1D steady-state slip pulses may

imply that they play no role in fault dynamics. We propose,
instead, that in fact they may serve as “critical nuclei” for
the transition from an almost nonslipping state Vstick to a
slipping state Vvs in a nonequilibrium analogy to equili-
brium first-order phase transitions [57]. That is, we propose
that unstable slip pulses provide a dynamical mechanism
for the nucleation of rapid slip along frictional interfaces
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FIG. 3. (a) The normalized perturbation width L=Lc vs τd=τmin.

The theoretical prediction L� (solid blue line) separates dynamic

perturbations that lead to nucleation (green squares) from those

that decay (brown diamonds) (see the text for details) and closely

follows the theoretical prediction ∼1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

τd − τ�
p

(dashed yellow

line) [34], where τ� is marked by the vertical dashed line. (Inset)

vm=Vmin vs τd=τmin. (b) The dimensionless pulse propagation

velocity βp vs τd=τmin. (Inset) The dimensionless front propa-

gation velocity β (solid green line for rupture fronts βr and

dashed-dotted brown line for healing fronts βh) vs τd=τmin. The

two curves intersect at τ�.
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FIG. 4. (a) A steady-state pulse (solid blue line), which is slightly stretched (dashed green line), L > L�, and compressed (dashed-

dotted brown line), L < L�, at t ¼ 0. (Inset) Enlargement. As time progresses [(b),(c)], the stretched perturbation grows and expands,

while the compressed one decays.
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that are initially at (or nearly at) rest, a regime that is not
commonly studied in the literature. To test this idea, we
introduced perturbations as initial conditions in the
dynamical equations obtained by stretching [L > L�ðτdÞ]
or compressing [L < L�ðτdÞ] the steady-state pulse solu-
tions corresponding to L�ðτdÞ for each τd > τ� and by
solving for a reduced τd using steady-state pulse solutions
corresponding to L ¼ L� for each τd < τ�. We then tracked
the system’s evolution to determine whether the perturba-
tions decay back to Vstick or bring the system to Vvs.

The results, over a range of L and τd values, are

superimposed in Fig. 3(a). The figure provides compelling

evidence that the theoretical prediction L�ðτdÞ indeed

quantitatively predicts the fate of dynamic perturbations;

i.e., perturbations with L < L� or τd < τ� (brown dia-

monds) decay back to Vstick, and those with L > L� (green
squares) grow and bring the system to Vvs, lending strong

support to the proposed connection between unstable slip

pulses and earthquake nucleation.

2D phase diagram: The Griffith-like length and

sustained pulses.—The concepts and physical picture

developed above are expected to be đ independent, and

hence we expect the nucleation length L�ðτdÞ to exist also

in đ > 1. For đ > 1, fronts and pulses are accompanied by a

cracklike singularity near their edges [2,7,27,32,34], asso-

ciated with a finite energy flux that is required to balance

near-edge frictional dissipation per unit area, Gc (an

effective fracture energy) [32,34,58–61]. Consequently,

for a given Gc, there exists a Griffith-like length LGðτdÞ ¼
4μπ−1Gcðτd − τresÞ−2 [48,49], where μ is the shear modulus

and τres is the residual shear stress left behind the edge,

below which no front or pulse propagation is possible.

Using L�ðτdÞ and LGðτdÞ, we can predict the salient

features and topology of theL − τd phase diagram for đ > 1.

First, L�=Lc is predicted to diverge at a finite τ� as

τ�=ðτd − τ�Þ for đ > 1 [34]. As LGðτdÞ ∼ ðτd − τresÞ−2 is a
minimal condition for front and pulse propagation,we expect

LG < L� and τres < τ�. Consequently, for L < LG, we

expect perturbations to decay without propagation, and

hence no nucleation to occur, simply because no front or

pulse can propagate. For L > L�, we expect perturbations

(of sufficiently large amplitude) to lead to the nucleation of

the Vvs phase through propagating rupture fronts. For L >

LG and τd < τ�, we expect no nucleation to occur but the

decay of perturbations to be different from that in the regime

L < LG and involve front or pulse propagation. Finally, for

perturbations with LG < L < L� under τd > τ�, new

dynamical modes that have no 1D analog might emerge.

To test these predictions, we performed spectral boundary

integral method [62–64] calculations for infinite đ ¼ 2

systems under antiplane shear (mode III) [48]. The basic

field in this problem, uzðx; y; tÞ (z⊥x; y), satisfies the

bulk elastodynamic equation μ∇2uz ¼ ρüz, together with

vðx; tÞ≡ _uzðx; y ¼ 0þ; tÞ − _uzðx; y ¼ 0−; tÞ and τðx; tÞ≡
σyzðx; y ¼ 0; tÞ ¼ μ∂yuzðx; y ¼ 0; tÞ. Furthermore, to test

the robustness of the emerging physical picture for different

types of initial perturbations, we consider here Gaussian

perturbations (the perturbation’s width L is defined as 10

Gaussian standard deviations [34]), which are somewhat

more generic. The results are presented in Fig. 5, where the

theoretical prediction for LGðτdÞ is added (dashed-dotted

black line; details about the estimation of Gc and τres can be

found in Ref. [34]). First, we observe that LGðτdÞ quanti-
tatively predicts the boundary below which perturbations

decay without propagation. Second, we observe that there

exists a vertical boundary (dashed line), which is interpreted

as τ�, such that no nucleation occurs for τd < τ�, yet the
decay for L > LG involves propagation of transient pulses,

as predicted theoretically. Third, there exists a phase boun-

dary (solid blue line), which appears to diverge at τ� and

hence interpreted as L�ðτdÞ, above which nucleation occurs

through rupture front propagation. The numericalL�=Lc line

is consistent with the theoretical prediction (cf. dashed

yellow line in Fig. 5). Movies are available in Ref. [34].

Finally, for LG < L < L� and τd > τ�, sustained pulses

that do not appear to exist in 1D emerge [22,25]. In this

dynamical regime, a pair of pulses moves away from one

another, apparently indefinitely (see movie in Ref. [34]).

While these pulses do not strictly reach steady-state

conditions for computationally feasible system sizes

[34], it is clear that they leave behind them a Vstick state,

and hence they do not lead to the nucleation of the Vvs

phase. The results presented in Fig. 5 appear to be

independent of the amplitude of perturbations, as long as

it is larger than Vvw [34]. Note that, while in đ ¼ 1 no edge

singularity exists, a Griffith-like length [which scales as

∼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

ḠHGc

p

ðτd − τresÞ−1] can still be formally defined using
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FIG. 5. A 2D phase diagram, the counterpart of the 1D phase

diagram in Fig. 3(a). Dynamic perturbations that decay without

propagation (brown diamonds) appear below the Griffith-like

length LGðτdÞ (dashed-dotted black line, obtained analytically;

see the text for details). Dynamic perturbations that lead to

nucleation (green squares) appear above L�ðτdÞ (solid blue line,

estimated numerically), which follows the theoretical prediction

∼1=ðτd − τ�Þ (dashed yellow line) when τd is close to τ
� (marked

by the vertical dashed line) [34]. For L > LG and τd < τ�,
dynamical perturbations decay with some propagation of tran-

sient pulses (black hexagrams), and for LG < L < L� and

τd > τ�, sustained pulses exist (orange circles; see the text for

details). Movies are available in Ref. [34].

PHYSICAL REVIEW LETTERS 121, 234302 (2018)

234302-4



global energy balance considerations [34,65]. Yet, we

found no trace for this length in our 1D phase diagram in

Fig. 3(a).

The phase diagram in Fig. 5 may appear somewhat

reminiscent of the computational results of Ref. [21],

obtained in a large parametric study of in-plane (mode-II)

dynamic rupture styles of faults featuring a finite shear

strength and strong velocity-weakening friction. Yet, there

are important differences between the two works. Most

notably, we provide here a theoretical understanding of

the phase boundaries L�ðτdÞ (associated with critical nuclei)
and LGðτdÞ (associated with a Griffith-like length), which is
not developed in Ref. [21], and we directly relate L�ðτdÞ in
1D to steady-state slip pulses and their stability,which are not

discussed in Ref. [21].

Concluding remarks and prospects.—We developed a

comprehensive physical picture of rapid slip nucleation

along quiescent frictional interfaces, highlighting the role

of unstable slip pulses as critical nuclei of size L� in a

nonequilibrium analogy to equilibrium first-order phase

transitions. We also elucidated the conditions for the

emergence of various propagative slippage modes (rupture

styles), including rupture fronts, decaying pulses, transient

pulses, and sustained pulses [21,25]. We stress that the

physics behind the nucleation length L�, associated with

abrupt and stochastic processes, is qualitatively different

from that of Lc, which is intrinsically related to a

deterministic velocity-weakening linear frictional instabil-

ity typically associated with precursory slow slip.

Seismological evidence for such qualitatively different

nucleation dynamics has been recently discussed [66]

and should be further explored in the future.
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