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We show that the average optimal cost for the traveling-salesman problem in two dimensions, which is the

archetypal problem in combinatorial optimization, in the bipartite case, is simply related to the average optimal

cost of the assignment problem with the same Euclidean, increasing, convex weights. In this way we extend a

result already known in one dimension where exact solutions are avalaible. The recently determined average

optimal cost for the assignment when the cost function is the square of the distance between the points provides

therefore an exact prediction

EN =
1

π
log N

for large number of points 2N . As a byproduct of our analysis also the loop covering problem has the same

optimal average cost. We also explain why this result cannot be extended at higher dimensions. We numerically

check the exact predictions.

INTRODUCTION

The Traveling Salesman Problem (TSP) [1, 2] can be for-

mulated in few words: what is the shortest tour which goes

through N given points? But this is well known to be a com-

putationally intractable problem. The number of possible so-

lutions increases exponentially with the number of points and

there is not a known algorithm able to find the solution in a

time that increases less than exponentially with N .

When the emphasis is shifted from the research of the so-

lution (in the worst case) to the typical properties of the so-

lution in a class of possible instances, the statistical prop-

erties of the optimal solutions can be described by a zero-

temperature statistical model. This approach has been tremen-

dously fruitul [3–8]. The random model in which the distances

between the cities are independent and equally distributed ran-

dom variables has been deeply studied [9–12]. Much less

is known for the Euclidean version of the random problem,

where the position of the points are chosen at random in a

finite domain of Rd , so that the distances of the points are now

correlated [13–15]. Of course, for large d, the effects of these

correlations are smaller and smaller and the methods used to

deal with the problem in absence of correlations becomes more

and more effective.

In the Euclidean version of the problem, we associate to the

step in the tour from the i-th point with coordinate xi to the

j-th point with coordinate x j a cost

cp (xi, x j ) = cp (xi − x j ) := ‖xi − x j ‖p , (1)

with p ∈ R and ‖xi − x j ‖ the Euclidean distance between the

two points. In the bipartite version of the problem the set of

2N points is partitioned in two subsets each with N points

and steps are allowed only from points in one subset to points

in the other subset, in the monopartite version all the points

can be reached from any other point. Interestingly enough in

d = 1, when p > 1, that is when the cost function is convex and

increasing, the search for the optimal tour can be exactly solved

both in the bipartite [16], as well as in the monopartite [17],

version of the problem.

There have been, recently, what we consider three relevant

progresses in the field:

i) for other optimization problems similar to the TSP, the

monopartite and bipartite versions have different op-

timal cost properties. For example for the matching,

1-factor and 2-factor (or loop-covering) problems, the

optimal cost is expected to be a self-averaging quantity

whose average scales according to

E
(p,d)

N
∼ N1− p

d (2)

(see [13] for a proof in the case p = 1). On the other

hand, in the bipartite version [18–20] it is expected that

E
(p,d)

N
∼




N1− p

2 for d = 1

N1− p

2 (log N )
p

2 for d = 2

N1− p

d for d > 2

(3)

that is a larger average cost with respect to the monopar-

tite case when d ≤ 2. Moreover, in the bipartite case

the optimal cost is expected to be not self-averaging;

ii) in the bipartite case it is always true [21] that the total

optimal cost of the TSP E∗H is larger than the total op-

timal cost of the 2-factor problem E∗M2
, which is larger

than twice the total optimal cost of the corresponding

matching problem (assignment) E∗M1

E∗H ≥ E∗M2
≥ 2E∗M1

. (4)
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Figure 2: The optimal assignment µ∗ is given by the orange

edges {(r1, b1), (r2, b2), (r3, b3), (r4, b4)}. The monopartite

TSP (gray dashed edges) among blue points provides the

necessary ordering. In order to obtain the TSP

b1, r1, b2, r2, b3, r3, b4, r4, b1 in the bipartite graph we have to

add the green edges {((r1, b2), (r2, b3), (r3, b4), (r4, b1)}.

the new edge (r1, b2).We know that, in the asymptotic limit of

large N , the typical distance between two matched points in µ∗

scales as (log N/N )1/2 while the typical distance between two

points matched in the monopartite case scales only as 1/N1/2,

that is (for all points but a fraction which goes to zero with N)

w(b1,r1) =

(

α11

log N

N

)
p

2

,

w(b2,r1) =


β22

1

N
+ α11

log N

N
− γ

√

log N

N



p

2

.

(8)

where (α11 log N/N )1/2 is the length of the edge (r1, b1) of

µ∗, (β22/N )1/2 is the length of the edge (b1, b2) of T ∗ and

γ = 2
√
α11 β22 cos θ, where θ is the angle between the edges

(r1, b1) of µ∗ and (b1, b2) of T ∗.
This means that, typically, the difference in cost

∆E = w(b2,r1) − w(b1,r1) ∼
(log N )

p−1
2

N
p

2

(9)

is small as compared to the typical cost (log N/N )
p

2

of one edge in the bipartite case. To obtain

a valid TSP solution, which we call hA, we add

to the edges µ∗ = {(r1, b1), . . . , (rN, bN )} the edges

{(r1, b2), . . . , (rN−1, bN ), (rN, b1)}, see Figure 2.

Of course hA is not, in general, the optimal solution of the

TSP. However, because of Eq. (4), we have that

EH [hA] ≥ E∗H ≥ E∗M2
≥ 2 E∗M1

(10)

and we have shown that, for large N , EH [hA] goes to 2 E∗M1

and therefore also E∗H must behave in the same way. As

a byproduct of our analysis also E∗M1
for the loop covering

problem has the same optimal average cost. Note also that our

argument is purely local and therefore it does not depend in

any way on the type of boundary conditions adopted. Since in

the case of periodic boundary conditions, as shown in [23], it

holds (5), we get that the average optimal cost of both the TSP

and 2-factor goes for large N to 2 times the optimal assignment.

Notice that an analogous construction can be used in any

number of dimensions. However, the success of the procedure

lies in the fact that the typical distance between two points in

µ∗ goes to zero slower than the typical distance between two

consecutive points in the monopartite TSP. This is true only

in one and two dimensions, and it is related to the importance

of fluctuations in the number of points of different kinds in a

small volume.

This approach allowed us to find also an approximated so-

lution of the TSP which improves as N → ∞. However, this

approximation requires the solution of a monopartite TSP on

N/2 points, corroborating the fact that the bipartite TSP is a

hard problem (from the point of view of complexity theory).

A similar construction can be used to achieve an approxi-

mated solution also for the 2-factor problem. In this case, in-

stead of solving the monopartite TSP on a point chosen within

each edge of µ∗, one should solve the monopartite matching

problem on this set of points, obtaining a matchingM∗. Once

more let us denote by (r1, b1) and (r2, b2) the two edges in

µ∗ which give rise to two matched points inM∗, and collect

them together with the edges (r1, b2) and (r2, b1). Repeating

the above procedure for each couple of points matched inM∗,
the union of the edges obtained gives a valid 2-factor whose

cost tends, in the limit of large N , to twice the cost of the

optimal assignment in one and two dimensions. Notice that,

in this case, the procedure is much more efficient because the

solution of the matching problem is polynomial in time.

NUMERICAL RESULTS

We have confirmed our theoretical predictions performing

numerical simulations on all the three models previously pre-

sented: assignment, bipartite 2-factor, and bipartite TSP. We

have considered the case of open boundary conditions.

For what concerns the assignment problem, many

polynomial-time algorithms are available in the literature, as

the famous Hungarian algorithm [25]. We have implemented

an in-house assignment solver based on the LEMON optimiza-

tion library [26], which is based on the Edmonds’ blossom

algorithm [27]. In the case of the 2-factor and TSP, the most

efficient way to tackle numerically those problems is to exploit

their linear or integer programming formulation.

To validate our argument, we solved for both assignment and

2-factor problem (with p = 1, 2), 105 independent instances for

2 ≤ N ≤ 125, 104 independent instances for 150 ≤ N ≤ 500,

and 103 independent instances for 600 ≤ N ≤ 1000. In the

TSP case, the computational cost is dramatically larger; for this

reason the maximum number of points we were able to achieve

with a good numerical precision using integer programming

was N = 300, also reducing the total number of instances.

An estimate of the asymptotic average optimal cost and finite

size corrections has been obtained using the fitting function
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Figure 3: Numerical results for p = 1 (left panel) and p = 2 (right panel) for the TSP (red points, top), the 2-factor (green

points, middle) and 2 times the assignment problem (blue points, bottom) in the open boundary condition case. Continuous

lines are numerical fit to the data.

p = 1 a1 a2 a3

TSP 0.717(2) 1.32(1) −0.513(1)

2-factor 0.714(2) 1.31(1) −0.58(2)

Assignment 0.714(2) 1.17(2) −0.77(2)

p = 2 a1 a2 a3

TSP 0.321(5) 1.603(2) −0.428(6)

2-factor 0.319(4) 1.577(2) −0.547(7)

Assignment 0.31831 1.502(2) −1.05(1)

Table I: Comparison between fit factors in assignment and TSP, for p = 1, 2. We have doubled the factors for the assignment to

verify our hypothesis. For p = 2, we have reported the theoretical value of a1 which is 1/π.

for p = 1

f (p=1) (N ) =
√

N log N

(

a1 +
a2

log N
+

a3

log2 N

)

(11)

while, for p = 2

f (p=2) (N ) = log N

(

a1 +
a2

log N
+

a3

log2 N

)

. (12)

These are the first 3 terms of the asymptotic behavior of the

cost of the assignment problem [18, 19]. Parameters a2 and

a3 for p = 2 were obtained fixing a1 to 1/π. In Figure 3 we

plot the data and fit in the case of open boundary conditions.

Results are reported in Table I.

To better confirm the behavior of the average optimal cost

of the TSP, we also performed some numerical simulations

using a much more efficient solver, that is the Concorde

TSP solver [28], which is based on an implementation of

the Branch-and-cut algorithm proposed by Padberg and Ri-

naldi [29]. The results for the leading term of the asymptotic

average optimal cost are confirmed while a small systematic er-

ror due to the integer implementation of the solver is observed

in the finite size corrections.

CONCLUSIONS

In this work we have considered three combinatorial opti-

mization problems, the matching problem, 2-factor problem

and TSP, where the cost is a convex increasing function of the

point distances. Previous investigations have been performed

in the one-dimensional case, by means of exact solutions [16].

Here we analyzed the bipartite version of these problems in

two dimensions, showing that, as already obtained in one di-

mension:

lim
N→∞

E∗H

E∗M1

= lim
N→∞

E∗M2

E∗M1

= 2 . (13)

This implies, for the special case p = 2, by using (5), our

main exact result, that is limN→∞(E∗H / log N ) = 1/π. In

general, the evaluation of E∗H and E∗M2
for large N is reduced

to the solution of the matching problem which requires only

polynomial time. This seems to be a peculiar feature of the

bipartite problem: the monopartite TSP cannot be approached

in a similar way. As a byproduct of our analysis, we provided

in Sec. two approximate algorithms, for the bipartite TSP and

the bipartite 2-factor: both are guaranteed to give a solution

with optimal cost for large N . The first algorithm allows to

solve the bipartite TSP on N points solving the monopartite

TSP with N points (notice that, on principle, the bipartite

version consists of 2N points). The second allows to exploit

the fast Hungarian algorithm to obtain an approximate solution

of the 2-factor problem.
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