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We show that the average optimal cost for the traveling salesman problem in two dimensions, which is the

archetypal problem in combinatorial optimization, in the bipartite case, is simply related to the average optimal

cost of the assignment problem with the same Euclidean, increasing, convex weights. In this way we extend

a result already known in one dimension where exact solutions are available. The recently determined average

optimal cost for the assignment when the cost function is the square of the distance between the points provides

therefore an exact prediction EN = 1

π
log N for large number of points 2N . As a by-product of our analysis,

also the loop covering problem has the same optimal average cost. We also explain why this result cannot be

extended to higher dimensions. We numerically check the exact predictions.
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I. INTRODUCTION

The traveling salesman problem (TSP) [1,2] can be for-

mulated in a few words: What is the shortest tour which

goes through N given points? But this is well known to be a

computationally intractable problem. The number of possible

solutions increases exponentially with the number of points

and there is not a known algorithm able to find the solution in

a time that increases less than exponentially with N .

When the emphasis is shifted from the research of the solu-

tion (in the worst case) to the typical properties of the solution

in a class of possible instances, the statistical properties of

the optimal solutions can be described by a zero-temperature

statistical model. This approach has been tremendously fruit-

ful [3–8]. The random model in which the distances between

the cities are independent and equally distributed random

variables has been deeply studied [9–12]. Much less is known

for the Euclidean version of the random problem, where

the positions of the points are chosen at random in a finite

domain of R
d , so that the distances of the points are now

correlated [13–15]. Of course, for large d, the effects of these

correlations are smaller and smaller and the methods used

to deal with the problem in absence of correlations becomes

more and more effective.

In the Euclidean version of the problem, we associate the

step in the tour from the ith point with coordinate xi to the j th
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point with coordinate xj a cost

cp(xi, xj ) = cp(xi − xj ) := ‖xi − xj‖p , (1)

with p ∈ R and ‖xi − xj‖ the Euclidean distance between

the two points. In the bipartite version of the problem the

set of 2N points is partitioned into two subsets each with N

points and steps are allowed only from points in one subset

to points in the other subset; in the monopartite version all

the points can be reached from any other point. Interestingly

enough in d = 1, when p > 1, that is, when the cost function

is convex and increasing, the search for the optimal tour can

be exactly solved both in the bipartite [16], as well as in the

monopartite [17], version of the problem.

There have been, recently, what we consider three relevant

advancements in the field:

(i) For other optimization problems similar to the TSP,

the monopartite and bipartite versions have different optimal

cost properties. For example, for the matching one-factor and

two-factor (or loop-covering) problems, the optimal cost is

expected to be a self-averaging quantity whose average scales

according to

E
(p,d )

N ∼ N1−(p/d ) (2)

(see [13] for a proof in the case p = 1). On the other hand, in

the bipartite version [18–20] it is expected that

E
(p,d )

N ∼







N1−(p/2) for d = 1

N1−(p/2)(log N )p/2 for d = 2

N1−(p/d ) for d > 2,

(3)

which is a larger average cost with respect to the monopartite

case when d � 2. Moreover, in the bipartite case the optimal

cost is expected to be not self-averaging.
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(ii) In the bipartite case it is always true [21] that the total

optimal cost of the TSP E∗
H is larger than the total optimal

cost of the two-factor problem E∗
M2

, which is larger than twice

the total optimal cost of the corresponding matching problem

(assignment) E∗
M1

:

E∗
H � E∗

M2
� 2E∗

M1
. (4)

In [16] it has been shown that in d = 1, in the asymptotic

limit of an infinitely large number of points, this bound is

saturated; that is, the total optimal cost of the TSP, rescaled

with N1−(p/2), is exactly twice the total rescaled optimal cost

of the assignment problem, and therefore all three quantities

coincide.

(iii) Through connection with the continuum version of

the problem, that is, the well-known transport problem, it has

been possible to compute, exactly, the total optimal cost of the

assignment problem for d = 2 and p = 2, in the asymptotic

limit of an infinitely large number of points [19,22–24]:

E
(2,2)
N =

1

2π
log N. (5)

We considered, therefore, the possibility that also in d = 2,

and p > 1, exactly, thanks to the logarithmic violation present

in the bipartite case, the asymptotic total cost of the TSP can

be exactly twice that of the assignment, which for p = 2 is

also exactly known. Indeed, this is the case.

This Rapid Communication is organized as follows. In

Sec. II we present the model. In Sec. III we present an ar-

gument to justify our strategy. In Sec. IV we provide evidence

by numerical simulations of how our result is established for

large numbers of points. We also examined the case p = 1,

which is the most largely considered in the literature.

II. THE MODEL

Consider a generic graph G = (V,E) where V is its set of

vertices and E ⊂ V 2 its set of edges. Let we > 0 be a weight

associated to the edge e ∈ E. We shall consider the complete

(monopartite) graph KN , whose vertex set has cardinality N

and E = V 2 and the complete bipartite graph KN,N , whose

vertex set is V = V1 ∪ V2 with V1 and V2 disjoint sets of

cardinality N , and E = V1 × V2.

Let µ = (V,E′) be a spanning subgraph of G, that is,

E′ ⊂ E. We can define a total cost associated to µ according

to

E[µ] =
∑

e∈µ

we. (6)

We shall consider three different classes of spanning sub-

graphs M. The set M1 of one-factor (matching), where each

vertex belongs to one and only one edge, the set M2 of two-

factor (two-matching or loop covering), where each vertex

belongs to two edges, and the set H of Hamiltonian cycles,

that is, two-factor formed by only one cycle (see Fig. 1). The

assignment, respectively two-factor, TSP, problems amounts

to the search of the subgraph µ∗ in M1, respectively M2, H,

which is optimal, in the sense of minimal total cost

E∗
M = EM[µ∗] = min

µ∈M
E[µ] (7)

FIG. 1. On the same instance with N = 16 blue (squared) and

red (disk) points (top left panel), we draw an arbitrarily-chosen

example of each class of spanning subgraph we are considering:

a one-factor (top right), an Hamiltonian cycle (bottom left) and a

two-factor (bottom right).

with M, respectively M1,M2,H. In the Euclidean version

of our bipartite optimization problems, we consider the im-

mersion of KN,N in an open subset � ⊂ R
d . V1, respectively

V2, will be identified by the set of N points with coordinates

ri , that we shall call the red points (respectively, by the set

of N points with coordinates bj , that we shall call the blue

points). Let (i, j ) be the edge connecting the ith red vertex

with the j th blue vertex. We give a weight wij = cp(ri − bj ),

with p � 1 as in Eq. (1).

Of course, in the monopartite Euclidean version there is

only one set of points.

In the random Euclidean version of the problem, each pos-

sible instance is obtained by choosing at random, with a given

law, the position of the points in �. For example, we shall

consider � = [0, 1]d and the flat distribution. We denote by

E∗ the average, over all instances, of the optimal total cost E∗.

III. SCALING ARGUMENT

In this section we will provide a scaling argument to

support our claim; that is, also in two dimensions, for any

given choice of the positions of the points, in the asymptotic

limit of large N , the cost of the bipartite TSP converges to

twice the cost of the assignment.

Given an instance, let us consider the optimal assignment

µ∗ on them. Let us now consider N points which are taken

between the red and blue points of each edge in µ∗ and call

T ∗ the optimal monopartite TSP solution on these points. For

simplicity, as these N points we take the blue points.

We shall use T ∗ to provide an ordering among the red and

blue points. Given two consecutive points in T ∗, for example,

b1 and b2, let us denote by (r1, b1) and (r2, b2) the two edges

in µ∗ involving the blue points b1 and b2 and let us consider

also the new edge (r1, b2). We know that, in the asymptotic

limit of large N , the typical distance between two matched

points in µ∗ scales as (log N/N )1/2 while the typical distance

between two points matched in the monopartite case scales

only as 1/N1/2, that is (for all points but a fraction which goes
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r1 r2

r3r4

b1 b2

b3b4

FIG. 2. The optimal assignment µ∗ is given by the orange

edges {(r1, b1), (r2, b2), (r3, b3), (r4, b4)}. The monopartite TSP

(gray dashed edges) among the blue points provides the necessary

ordering. In order to obtain the TSP b1, r1, b2, r2, b3, r3, b4, r4, b1

in the bipartite graph we have to add the green edges

{((r1, b2), (r2, b3), (r3, b4), (r4, b1)}.

to zero with N ),

w(b1,r1 ) =
(

α11

log N

N

)p/2

,

w(b2,r1 ) =
[

β22

1

N
+ α11

log N

N
− γ

√
log N

N

]p/2

, (8)

where (α11 log N/N )1/2 is the length of the edge (r1, b1) of

µ∗, (β22/N )1/2 is the length of the edge (b1, b2) of T ∗, and

γ = 2
√

α11β22 cos θ , where θ is the angle between the edges

(r1, b1) of µ∗ and (b1, b2) of T ∗.

This means that, typically, the difference in cost

�E = w(b2,r1 ) − w(b1,r1 ) ∼
(log N )(p−1)/2

Np/2
(9)

is small as compared to the typical cost (log N/N )p/2

of one edge in the bipartite case. To obtain a valid

TSP solution, which we call hA, we add to the edges

µ∗ = {(r1, b1), . . . , (rN , bN )} the edges {(r1, b2), . . . ,

(rN−1, bN ), (rN , b1)} (see Fig. 2).

Of course hA is not, in general, the optimal solution of the

TSP. However, because of Eq. (4), we have that

EH[hA] � E∗
H � E∗

M2
� 2 E∗

M1
, (10)

and we have shown that, for large N, EH[hA] goes to 2E∗
M1

and therefore also E∗
H must behave in the same way. As a

by-product of our analysis, also E∗
M1

for the loop covering

problem has the same optimal average cost. Note also that our

argument is purely local and therefore it does not depend in

any way on the type of boundary conditions adopted. Since

in the case of periodic boundary conditions, as shown in [23],

it holds (5), we get that the average optimal cost of both the

TSP and two-factor goes for large N to two times the optimal

assignment.

Notice that an analogous construction can be used in any

number of dimensions. However, the success of the procedure

lies in the fact that the typical distance between two points in

µ∗ goes to zero slower than the typical distance between two

consecutive points in the monopartite TSP. This is true only

in one and two dimensions, and it is related to the importance

of fluctuations in the number of points of different kinds in a

small volume.

This approach allowed us to find also an approximated

solution of the TSP which improves as N → ∞. However,

this approximation requires the solution of a monopartite TSP

on N/2 points, corroborating the fact that the bipartite TSP is

a hard problem (from the point of view of complexity theory).

A similar construction can be used to achieve an approxi-

mated solution also for the two-factor problem. In this case,

instead of solving the monopartite TSP on a point chosen

within each edge of µ∗, one should solve the monopartite

matching problem on this set of points, obtaining a matching

M∗. Once more let us denote by (r1, b1) and (r2, b2) the

two edges in µ∗ which give rise to two matched points in

M∗, and collect them together with the edges (r1, b2) and

(r2, b1). Repeating the above procedure for each couple of

points matched in M∗, the union of the edges obtained gives

a valid two-factor whose cost tends, in the limit of large N ,

to twice the cost of the optimal assignment in one and two

dimensions. Notice that, in this case, the procedure is much

more efficient because the solution of the matching problem

is polynomial in time.

IV. NUMERICAL RESULTS

We have confirmed our theoretical predictions by per-

forming numerical simulations on all three models previously

presented: assignment, bipartite two-factor, and bipartite TSP.

We have considered the case of open boundary conditions.

For what concerns the assignment problem, many

polynomial-time algorithms are available in the literature,

such as the famous Hungarian algorithm [25]. We have imple-

mented an in-house assignment solver based on the LEMON

optimization library [26], which is based on Edmonds’ blos-

som algorithm [27]. In the case of the two-factor and TSP, the

most efficient way to numerically tackle those problems is to

exploit their linear or integer programming formulation.

To validate our argument, we solved for both the as-

signment and the two-factor problem (with p = 1, 2), 105

independent instances for 2 � N � 125, 104 independent in-

stances for 150 � N � 500, and 103 independent instances

for 600 � N � 1000. In the TSP case, the computational cost

is dramatically larger; for this reason the maximum number of

points we were able to achieve with good numerical precision

using integer programming was N = 300, also reducing the

total number of instances.

An estimate of the asymptotic average optimal cost and

finite-size corrections has been obtained using the fitting

function for p = 1

f (p=1)(N ) =
√

N log N

(

a1 +
a2

log N
+

a3

log2 N

)

, (11)

while, for p = 2

f (p=2)(N ) = log N

(

a1 +
a2

log N
+

a3

log2 N

)

. (12)

These are the first three terms of the asymptotic behavior of

the cost of the assignment problem [18,19]. Parameters a2 and

a3 for p = 2 were obtained fixing a1 to 1/π . In Fig. 3 we plot
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FIG. 3. Numerical results for p = 1 (left panel) and p = 2 (right panel) for the TSP (red points, top), the two-factor [green points (middle)],

and two times the assignment problem [blue points (bottom)] in the open boundary condition case. Continuous lines are numerically fit to the

data.

the data and fit in the case of open boundary conditions. The

results are reported in Table I.

To better confirm the behavior of the average optimal

cost of the TSP, we also performed some numerical simu-

lations using a much more efficient solver, that is, the Con-

corde TSP solver [28], which is based on an implementation

of the branch-and-cut algorithm proposed by Padberg and

Rinaldi [29]. The results for the leading term of the asymptotic

average optimal cost are confirmed while a small system-

atic error due to the integer implementation of the solver is

observed in the finite-size corrections.

V. CONCLUSIONS

In this work we have considered three combinatorial op-

timization problems: the matching problem, two-factor prob-

lem, and TSP, where the cost is a convex increasing function

of the point distances. Previous investigations have been

performed in the one-dimensional case, by means of exact

solutions [16]. Here we analyzed the bipartite version of

these problems in two dimensions, showing that, as already

obtained in one dimension,

lim
N→∞

E∗
H

E∗
M1

= lim
N→∞

E∗
M2

E∗
M1

= 2. (13)

This implies, for the special case p = 2, by using (5), our

main exact result is limN→∞(E∗
H/ log N ) = 1/π . In general,

the evaluation of E∗
H and E∗

M2
for large N is reduced to

the solution of the matching problem which requires only

polynomial time. This seems to be a peculiar feature of the

bipartite problem: the monopartite TSP cannot be approached

in a similar way. As a by-product of our analysis, we provided

in Sec. III two approximate algorithms, for the bipartite TSP

and the bipartite two-factor: both are guaranteed to give a

solution with optimal cost for large N . The first algorithm

allows one to solve the bipartite TSP on N points solving the

monopartite TSP with N points (notice that, in principle, the

bipartite version consists of 2N points). The second allows

one to exploit the fast Hungarian algorithm to obtain an

approximate solution of the two-factor problem.
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TABLE I. Comparison between fit factors in assignment and TSP, for p = 1, 2. We have doubled the factors for the assignment to verify

our hypothesis. For p = 2, we have reported the theoretical value of a1, which is 1/π .

p = 1 a1 a2 a3 p = 2 a1 a2 a3

TSP 0.717(2) 1.32(1) −0.513(1) TSP 0.321(5) 1.603(2) −0.428(6)

Two-factor 0.714(2) 1.31(1) −0.58(2) Two-factor 0.319(4) 1.577(2) −0.547(7)

Assignment 0.714(2) 1.17(2) −0.77(2) Assignment 0.31831 1.502(2) −1.05(1)
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