000859717 001__ 859717
000859717 005__ 20210130000353.0
000859717 0247_ $$2doi$$a10.1103/PhysRevMaterials.2.015002
000859717 0247_ $$2Handle$$a2128/21329
000859717 0247_ $$2WOS$$aWOS:000423527600003
000859717 0247_ $$2altmetric$$aaltmetric:31785483
000859717 037__ $$aFZJ-2019-00554
000859717 082__ $$a530
000859717 1001_ $$0P:(DE-HGF)0$$aRogge, Paul C.$$b0
000859717 245__ $$aElectronic structure of negative charge transfer CaFeO 3 across the metal-insulator transition
000859717 260__ $$aCollege Park, MD$$bAPS$$c2018
000859717 3367_ $$2DRIVER$$aarticle
000859717 3367_ $$2DataCite$$aOutput Types/Journal article
000859717 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1548140774_14471
000859717 3367_ $$2BibTeX$$aARTICLE
000859717 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000859717 3367_ $$00$$2EndNote$$aJournal Article
000859717 520__ $$aWe investigated the metal-insulator transition for epitaxial thin films of the perovskite CaFeO3, a material with a significant oxygen ligand hole contribution to its electronic structure. We find that biaxial tensile and compressive strain suppress the metal-insulator transition temperature. By combining hard x-ray photoelectron spectroscopy, soft x-ray absorption spectroscopy, and density functional calculations, we resolve the element-specific changes to the electronic structure across the metal-insulator transition. We demonstrate that the Fe sites undergo no observable spectroscopic change between the metallic and insulating states, whereas the O electronic configuration undergoes significant changes. This strongly supports the bond-disproportionation model of the metal-insulator transition for CaFeO3 and highlights the importance of ligand holes in its electronic structure. By sensitively measuring the ligand hole density, however, we find that it increases by ∼5–10% in the insulating state, which we ascribe to a further localization of electron charge on the Fe sites. These results provide detailed insight into the metal-insulator transition of negative charge transfer compounds and should prove instructive for understanding metal-insulator transitions in other late transition metal compounds such as the nickelates.
000859717 536__ $$0G:(DE-HGF)POF3-522$$a522 - Controlling Spin-Based Phenomena (POF3-522)$$cPOF3-522$$fPOF III$$x0
000859717 588__ $$aDataset connected to CrossRef
000859717 7001_ $$0P:(DE-HGF)0$$aChandrasena, Ravini U.$$b1
000859717 7001_ $$0P:(DE-HGF)0$$aCammarata, Antonio$$b2
000859717 7001_ $$0P:(DE-HGF)0$$aGreen, Robert J.$$b3
000859717 7001_ $$0P:(DE-HGF)0$$aShafer, Padraic$$b4
000859717 7001_ $$0P:(DE-HGF)0$$aLefler, Benjamin M.$$b5
000859717 7001_ $$0P:(DE-HGF)0$$aHuon, Amanda$$b6
000859717 7001_ $$0P:(DE-HGF)0$$aArab, Arian$$b7
000859717 7001_ $$0P:(DE-HGF)0$$aArenholz, Elke$$b8
000859717 7001_ $$0P:(DE-HGF)0$$aLee, Ho Nyung$$b9
000859717 7001_ $$0P:(DE-HGF)0$$aLee, Tien-Lin$$b10
000859717 7001_ $$0P:(DE-Juel1)164137$$aNemsak, Slavomir$$b11$$eCorresponding author
000859717 7001_ $$0P:(DE-HGF)0$$aRondinelli, James M.$$b12
000859717 7001_ $$0P:(DE-HGF)0$$aGray, Alexander X.$$b13
000859717 7001_ $$0P:(DE-HGF)0$$aMay, Steven J.$$b14$$eCorresponding author
000859717 773__ $$0PERI:(DE-600)2898355-5$$a10.1103/PhysRevMaterials.2.015002$$gVol. 2, no. 1, p. 015002$$n1$$p015002$$tPhysical review materials$$v2$$x2475-9953$$y2018
000859717 8564_ $$uhttps://juser.fz-juelich.de/record/859717/files/PhysRevMaterials.2.015002.pdf$$yOpenAccess
000859717 8564_ $$uhttps://juser.fz-juelich.de/record/859717/files/PhysRevMaterials.2.015002.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000859717 909CO $$ooai:juser.fz-juelich.de:859717$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000859717 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164137$$aForschungszentrum Jülich$$b11$$kFZJ
000859717 9131_ $$0G:(DE-HGF)POF3-522$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000859717 9141_ $$y2018
000859717 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000859717 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000859717 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV MATER : 2017
000859717 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000859717 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000859717 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000859717 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000859717 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000859717 920__ $$lyes
000859717 9201_ $$0I:(DE-Juel1)PGI-6-20110106$$kPGI-6$$lElektronische Eigenschaften$$x0
000859717 980__ $$ajournal
000859717 980__ $$aVDB
000859717 980__ $$aUNRESTRICTED
000859717 980__ $$aI:(DE-Juel1)PGI-6-20110106
000859717 9801_ $$aFullTexts