000859718 001__ 859718
000859718 005__ 20230426083204.0
000859718 0247_ $$2doi$$a10.1103/PhysRevB.98.165124
000859718 0247_ $$2ISSN$$a0163-1829
000859718 0247_ $$2ISSN$$a0556-2805
000859718 0247_ $$2ISSN$$a1050-2947
000859718 0247_ $$2ISSN$$a1094-1622
000859718 0247_ $$2ISSN$$a1095-3795
000859718 0247_ $$2ISSN$$a1098-0121
000859718 0247_ $$2ISSN$$a1538-4489
000859718 0247_ $$2ISSN$$a1550-235X
000859718 0247_ $$2ISSN$$a2469-9950
000859718 0247_ $$2ISSN$$a2469-9969
000859718 0247_ $$2Handle$$a2128/21330
000859718 0247_ $$2WOS$$aWOS:000447302700007
000859718 0247_ $$2altmetric$$aaltmetric:33795430
000859718 037__ $$aFZJ-2019-00555
000859718 082__ $$a530
000859718 1001_ $$0P:(DE-HGF)0$$aLin, S.-C.$$b0$$eCorresponding author
000859718 245__ $$aInterface properties and built-in potential profile of a LaCr O 3 / SrTi O 3 superlattice determined by standing-wave excited photoemission spectroscopy
000859718 260__ $$aWoodbury, NY$$bInst.$$c2018
000859718 3367_ $$2DRIVER$$aarticle
000859718 3367_ $$2DataCite$$aOutput Types/Journal article
000859718 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1548141219_10857
000859718 3367_ $$2BibTeX$$aARTICLE
000859718 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000859718 3367_ $$00$$2EndNote$$aJournal Article
000859718 520__ $$aLaCrO3(LCO)/SrTiO3(STO) heterojunctions are intriguing due to a polar discontinuity along [001], exhibiting two distinct and controllable charged interface structures [(LaO)+/(TiO2)0 and (SrO)0/(CrO2)−] with induced polarization, and a resulting depth-dependent potential. In this study, we have used soft- and hard-x-ray standing-wave excited photoemission spectroscopy (SW-XPS) to quantitatively determine the elemental depth profile, interface properties, and depth distribution of the polarization-induced built-in potentials. We observe an alternating charged interface configuration: a positively charged (LaO)+/(TiO2)0 intermediate layer at the LCOtop/STObottom interface and a negatively charged (SrO)0/(CrO2)− intermediate layer at the STOtop/LCObottom interface. Using core-level SW data, we have determined the depth distribution of species, including through the interfaces, and these results are in excellent agreement with scanning transmission electron microscopy and electron energy-loss spectroscopy mapping of local structure and composition. SW-XPS also enabled deconvolution of the LCO and STO contributions to the valence-band (VB) spectra. Using a two-step analytical approach involving first SW-induced core-level binding-energy shifts and then VB modeling, the variation in potential across the complete superlattice is determined in detail. This potential is in excellent agreement with density functional theory models, confirming this method as a generally useful tool for interface studies.
000859718 536__ $$0G:(DE-HGF)POF3-522$$a522 - Controlling Spin-Based Phenomena (POF3-522)$$cPOF3-522$$fPOF III$$x0
000859718 542__ $$2Crossref$$i2018-10-15$$uhttps://link.aps.org/licenses/aps-default-license
000859718 542__ $$2Crossref$$i2019-10-15$$uhttps://link.aps.org/licenses/aps-default-accepted-manuscript-license
000859718 588__ $$aDataset connected to CrossRef
000859718 7001_ $$0P:(DE-HGF)0$$aKuo, C.-T.$$b1
000859718 7001_ $$0P:(DE-HGF)0$$aComes, R. B.$$b2
000859718 7001_ $$0P:(DE-HGF)0$$aRault, J. E.$$b3
000859718 7001_ $$0P:(DE-HGF)0$$aRueff, J.-P.$$b4
000859718 7001_ $$0P:(DE-Juel1)164137$$aNemsak, Slavomir$$b5
000859718 7001_ $$0P:(DE-HGF)0$$aTaleb, A.$$b6
000859718 7001_ $$0P:(DE-HGF)0$$aKortright, J. B.$$b7
000859718 7001_ $$0P:(DE-HGF)0$$aMeyer-Ilse, J.$$b8
000859718 7001_ $$0P:(DE-HGF)0$$aGullikson, E.$$b9
000859718 7001_ $$0P:(DE-HGF)0$$aSushko, P. V.$$b10
000859718 7001_ $$0P:(DE-HGF)0$$aSpurgeon, S. R.$$b11
000859718 7001_ $$0P:(DE-Juel1)161368$$aGehlmann, M.$$b12
000859718 7001_ $$0P:(DE-HGF)0$$aBowden, M. E.$$b13
000859718 7001_ $$0P:(DE-Juel1)130895$$aPlucinski, L.$$b14
000859718 7001_ $$0P:(DE-HGF)0$$aChambers, S. A.$$b15
000859718 7001_ $$0P:(DE-HGF)0$$aFadley, C. S.$$b16
000859718 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.98.165124$$bAmerican Physical Society (APS)$$d2018-10-15$$n16$$p165124$$tPhysical Review B$$v98$$x2469-9950$$y2018
000859718 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.98.165124$$gVol. 98, no. 16, p. 165124$$n16$$p165124$$tPhysical review / B$$v98$$x2469-9950$$y2018
000859718 8564_ $$uhttps://juser.fz-juelich.de/record/859718/files/PhysRevB.98.165124.pdf$$yOpenAccess
000859718 8564_ $$uhttps://juser.fz-juelich.de/record/859718/files/PhysRevB.98.165124.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000859718 909CO $$ooai:juser.fz-juelich.de:859718$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000859718 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164137$$aForschungszentrum Jülich$$b5$$kFZJ
000859718 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130895$$aForschungszentrum Jülich$$b14$$kFZJ
000859718 9131_ $$0G:(DE-HGF)POF3-522$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000859718 9141_ $$y2018
000859718 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000859718 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000859718 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000859718 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2017
000859718 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000859718 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000859718 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000859718 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000859718 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000859718 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000859718 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000859718 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000859718 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000859718 920__ $$lyes
000859718 9201_ $$0I:(DE-Juel1)PGI-6-20110106$$kPGI-6$$lElektronische Eigenschaften$$x0
000859718 980__ $$ajournal
000859718 980__ $$aVDB
000859718 980__ $$aUNRESTRICTED
000859718 980__ $$aI:(DE-Juel1)PGI-6-20110106
000859718 9801_ $$aFullTexts
000859718 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1146/annurev-matsci-070813-113552
000859718 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.88.144411
000859718 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.4952736
000859718 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.116.156801
000859718 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature16463
000859718 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature19343
000859718 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/admi.201500779
000859718 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.117.226802
000859718 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevMaterials.1.063401
000859718 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.4932063
000859718 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.44.1620
000859718 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.107.206802
000859718 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.4790171
000859718 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.elspec.2014.06.004
000859718 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.82.205116
000859718 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.93.245103
000859718 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1023/A:1009947517710
000859718 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0009-2614(78)89016-2
000859718 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0368-2048(02)00283-9
000859718 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.92.195422
000859718 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.84.184410
000859718 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.chemmater.6b04329
000859718 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.107.116402
000859718 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.84.773
000859718 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.64.125115
000859718 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.77.073102
000859718 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.110.077401
000859718 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/adma.201301030
000859718 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/cm503541u
000859718 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.100.136406
000859718 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.54.11169
000859718 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.49.14251
000859718 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/ncomms6441
000859718 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0092-640X(85)90016-6
000859718 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.50.17953
000859718 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.57.1505
000859718 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.81.165312