000859719 001__ 859719
000859719 005__ 20230426083204.0
000859719 0247_ $$2doi$$a10.1103/PhysRevB.98.155103
000859719 0247_ $$2ISSN$$a0163-1829
000859719 0247_ $$2ISSN$$a0556-2805
000859719 0247_ $$2ISSN$$a1050-2947
000859719 0247_ $$2ISSN$$a1094-1622
000859719 0247_ $$2ISSN$$a1095-3795
000859719 0247_ $$2ISSN$$a1098-0121
000859719 0247_ $$2ISSN$$a1538-4489
000859719 0247_ $$2ISSN$$a1550-235X
000859719 0247_ $$2ISSN$$a2469-9950
000859719 0247_ $$2ISSN$$a2469-9969
000859719 0247_ $$2Handle$$a2128/21332
000859719 0247_ $$2WOS$$aWOS:000446136000003
000859719 037__ $$aFZJ-2019-00556
000859719 082__ $$a530
000859719 1001_ $$0P:(DE-HGF)0$$aChandrasena, R. U.$$b0
000859719 245__ $$aDepth-resolved charge reconstruction at the LaNi O 3 / CaMn O 3 interface
000859719 260__ $$aWoodbury, NY$$bInst.$$c2018
000859719 3367_ $$2DRIVER$$aarticle
000859719 3367_ $$2DataCite$$aOutput Types/Journal article
000859719 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1548141739_10857
000859719 3367_ $$2BibTeX$$aARTICLE
000859719 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000859719 3367_ $$00$$2EndNote$$aJournal Article
000859719 520__ $$aRational design of low-dimensional electronic phenomena at oxide interfaces is currently considered to be one of the most promising schemes for realizing new energy-efficient logic and memory devices. An atomically abrupt interface between paramagnetic LaNiO3 and antiferromagnetic CaMnO3 exhibits interfacial ferromagnetism, which can be tuned via a thickness-dependent metal-insulator transition in LaNiO3. Once fully understood, such emergent functionality could turn this archetypal Mott-interface system into a key building block for the above-mentioned future devices. Here, we use depth-resolved standing-wave photoemission spectroscopy in conjunction with scanning transmission electron microscopy and x-ray absorption spectroscopy, to demonstrate a depth-dependent charge reconstruction at the LaNiO3/CaMnO3 interface. Our measurements reveal an increased concentration of Mn3+ and Ni2+ cations at the interface, which create an electronic environment favorable for the emergence of interfacial ferromagnetism mediated via the Mn4+−Mn3+ ferromagnetic double exchange and Ni2+−O−Mn4+ superexchange mechanisms. Our findings suggest a strategy for designing functional Mott oxide heterostructures by tuning the interfacial cation characteristics via controlled manipulation of thickness, strain, and ionic defect states.
000859719 536__ $$0G:(DE-HGF)POF3-522$$a522 - Controlling Spin-Based Phenomena (POF3-522)$$cPOF3-522$$fPOF III$$x0
000859719 542__ $$2Crossref$$i2018-10-01$$uhttps://link.aps.org/licenses/aps-default-license
000859719 542__ $$2Crossref$$i2019-10-01$$uhttps://link.aps.org/licenses/aps-default-accepted-manuscript-license
000859719 588__ $$aDataset connected to CrossRef
000859719 7001_ $$0P:(DE-HGF)0$$aFlint, C. L.$$b1
000859719 7001_ $$0P:(DE-Juel1)176123$$aYang, W.$$b2$$eEditor
000859719 7001_ $$0P:(DE-HGF)0$$aArab, Arian$$b3
000859719 7001_ $$0P:(DE-Juel1)164137$$aNemsak, Slavomir$$b4
000859719 7001_ $$0P:(DE-Juel1)161368$$aGehlmann, M.$$b5
000859719 7001_ $$0P:(DE-HGF)0$$aÖzdöl, V. B.$$b6
000859719 7001_ $$0P:(DE-HGF)0$$aBisti, F.$$b7
000859719 7001_ $$0P:(DE-HGF)0$$aWijesekara, K. D.$$b8
000859719 7001_ $$0P:(DE-HGF)0$$aMeyer-Ilse, J.$$b9
000859719 7001_ $$0P:(DE-HGF)0$$aGullikson, E.$$b10
000859719 7001_ $$0P:(DE-HGF)0$$aArenholz, E.$$b11
000859719 7001_ $$0P:(DE-HGF)0$$aCiston, J.$$b12
000859719 7001_ $$0P:(DE-Juel1)130948$$aSchneider, C. M.$$b13
000859719 7001_ $$0P:(DE-HGF)0$$aStrocov, V. N.$$b14
000859719 7001_ $$0P:(DE-HGF)0$$aSuzuki, Y.$$b15
000859719 7001_ $$0P:(DE-HGF)0$$aGray, A. X.$$b16$$eCorresponding author
000859719 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.98.155103$$bAmerican Physical Society (APS)$$d2018-10-01$$n15$$p155103$$tPhysical Review B$$v98$$x2469-9950$$y2018
000859719 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.98.155103$$gVol. 98, no. 15, p. 155103$$n15$$p155103$$tPhysical review / B$$v98$$x2469-9950$$y2018
000859719 8564_ $$uhttps://juser.fz-juelich.de/record/859719/files/PhysRevB.98.155103.pdf$$yOpenAccess
000859719 8564_ $$uhttps://juser.fz-juelich.de/record/859719/files/PhysRevB.98.155103.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000859719 909CO $$ooai:juser.fz-juelich.de:859719$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000859719 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)176123$$aExternal Institute$$b2$$kExtern
000859719 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164137$$aForschungszentrum Jülich$$b4$$kFZJ
000859719 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130948$$aForschungszentrum Jülich$$b13$$kFZJ
000859719 9131_ $$0G:(DE-HGF)POF3-522$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000859719 9141_ $$y2018
000859719 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000859719 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000859719 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000859719 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2017
000859719 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000859719 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000859719 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000859719 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000859719 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000859719 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000859719 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000859719 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000859719 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000859719 920__ $$lyes
000859719 9201_ $$0I:(DE-Juel1)PGI-6-20110106$$kPGI-6$$lElektronische Eigenschaften$$x0
000859719 980__ $$ajournal
000859719 980__ $$aVDB
000859719 980__ $$aUNRESTRICTED
000859719 980__ $$aI:(DE-Juel1)PGI-6-20110106
000859719 9801_ $$aFullTexts
000859719 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nmat1805
000859719 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nnano.2007.412
000859719 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1080/00018732.2010.534865
000859719 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1146/annurev-conmatphys-062910-140445
000859719 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1146/annurev-matsci-070813-113315
000859719 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nmat3223
000859719 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.3669402
000859719 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature02308
000859719 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature00977
000859719 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature07293
000859719 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1146006
000859719 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1398331
000859719 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.111.087202
000859719 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.96.144438
000859719 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevMaterials.1.024404
000859719 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.106.246403
000859719 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/adma.201304256
000859719 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1146/annurev-matsci-070115-032057
000859719 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.88.144411
000859719 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1146/annurev-matsci-070813-113447
000859719 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.nanolett.6b03986
000859719 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevMaterials.1.053404
000859719 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.98.014105
000859719 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41467-018-04546-5
000859719 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.98.216804
000859719 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1142/S0218625X02002622
000859719 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.4773375
000859719 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/srep15201
000859719 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.4927239
000859719 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nphys2733
000859719 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.74.094407
000859719 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1107/S1600577513019085
000859719 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1107/S0909049510019862
000859719 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.82.205116
000859719 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.107.116402
000859719 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.4790171
000859719 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.107.116805
000859719 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.94.014118
000859719 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.4864044
000859719 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.65.113102
000859719 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.73.155425
000859719 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1209/0295-5075/93/57002
000859719 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/srep08460
000859719 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1039/C3EE41622D
000859719 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1116/1.3071947
000859719 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/sia.2097
000859719 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0022-3697(58)90107-0
000859719 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0022-3697(59)90061-7