001     859719
005     20230426083204.0
024 7 _ |a 10.1103/PhysRevB.98.155103
|2 doi
024 7 _ |a 0163-1829
|2 ISSN
024 7 _ |a 0556-2805
|2 ISSN
024 7 _ |a 1050-2947
|2 ISSN
024 7 _ |a 1094-1622
|2 ISSN
024 7 _ |a 1095-3795
|2 ISSN
024 7 _ |a 1098-0121
|2 ISSN
024 7 _ |a 1538-4489
|2 ISSN
024 7 _ |a 1550-235X
|2 ISSN
024 7 _ |a 2469-9950
|2 ISSN
024 7 _ |a 2469-9969
|2 ISSN
024 7 _ |a 2128/21332
|2 Handle
024 7 _ |a WOS:000446136000003
|2 WOS
037 _ _ |a FZJ-2019-00556
082 _ _ |a 530
100 1 _ |a Chandrasena, R. U.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Depth-resolved charge reconstruction at the LaNi O 3 / CaMn O 3 interface
260 _ _ |a Woodbury, NY
|c 2018
|b Inst.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1548141739_10857
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Rational design of low-dimensional electronic phenomena at oxide interfaces is currently considered to be one of the most promising schemes for realizing new energy-efficient logic and memory devices. An atomically abrupt interface between paramagnetic LaNiO3 and antiferromagnetic CaMnO3 exhibits interfacial ferromagnetism, which can be tuned via a thickness-dependent metal-insulator transition in LaNiO3. Once fully understood, such emergent functionality could turn this archetypal Mott-interface system into a key building block for the above-mentioned future devices. Here, we use depth-resolved standing-wave photoemission spectroscopy in conjunction with scanning transmission electron microscopy and x-ray absorption spectroscopy, to demonstrate a depth-dependent charge reconstruction at the LaNiO3/CaMnO3 interface. Our measurements reveal an increased concentration of Mn3+ and Ni2+ cations at the interface, which create an electronic environment favorable for the emergence of interfacial ferromagnetism mediated via the Mn4+−Mn3+ ferromagnetic double exchange and Ni2+−O−Mn4+ superexchange mechanisms. Our findings suggest a strategy for designing functional Mott oxide heterostructures by tuning the interfacial cation characteristics via controlled manipulation of thickness, strain, and ionic defect states.
536 _ _ |a 522 - Controlling Spin-Based Phenomena (POF3-522)
|0 G:(DE-HGF)POF3-522
|c POF3-522
|f POF III
|x 0
542 _ _ |i 2018-10-01
|2 Crossref
|u https://link.aps.org/licenses/aps-default-license
542 _ _ |i 2019-10-01
|2 Crossref
|u https://link.aps.org/licenses/aps-default-accepted-manuscript-license
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Flint, C. L.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Yang, W.
|0 P:(DE-Juel1)176123
|b 2
|e Editor
700 1 _ |a Arab, Arian
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Nemsak, Slavomir
|0 P:(DE-Juel1)164137
|b 4
700 1 _ |a Gehlmann, M.
|0 P:(DE-Juel1)161368
|b 5
700 1 _ |a Özdöl, V. B.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Bisti, F.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Wijesekara, K. D.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Meyer-Ilse, J.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Gullikson, E.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Arenholz, E.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Ciston, J.
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Schneider, C. M.
|0 P:(DE-Juel1)130948
|b 13
700 1 _ |a Strocov, V. N.
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Suzuki, Y.
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Gray, A. X.
|0 P:(DE-HGF)0
|b 16
|e Corresponding author
773 1 8 |a 10.1103/physrevb.98.155103
|b American Physical Society (APS)
|d 2018-10-01
|n 15
|p 155103
|3 journal-article
|2 Crossref
|t Physical Review B
|v 98
|y 2018
|x 2469-9950
773 _ _ |a 10.1103/PhysRevB.98.155103
|g Vol. 98, no. 15, p. 155103
|0 PERI:(DE-600)2844160-6
|n 15
|p 155103
|t Physical review / B
|v 98
|y 2018
|x 2469-9950
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/859719/files/PhysRevB.98.155103.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/859719/files/PhysRevB.98.155103.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:859719
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-Juel1)176123
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)164137
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 13
|6 P:(DE-Juel1)130948
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-522
|2 G:(DE-HGF)POF3-500
|v Controlling Spin-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV B : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-6-20110106
|k PGI-6
|l Elektronische Eigenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-6-20110106
980 1 _ |a FullTexts
999 C 5 |a 10.1038/nmat1805
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nnano.2007.412
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1080/00018732.2010.534865
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1146/annurev-conmatphys-062910-140445
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1146/annurev-matsci-070813-113315
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nmat3223
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.3669402
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nature02308
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nature00977
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nature07293
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/science.1146006
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.1398331
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.111.087202
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.96.144438
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevMaterials.1.024404
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.106.246403
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/adma.201304256
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1146/annurev-matsci-070115-032057
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.88.144411
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1146/annurev-matsci-070813-113447
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/acs.nanolett.6b03986
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevMaterials.1.053404
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.98.014105
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/s41467-018-04546-5
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.98.216804
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1142/S0218625X02002622
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.4773375
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/srep15201
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.4927239
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nphys2733
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.74.094407
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1107/S1600577513019085
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1107/S0909049510019862
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.82.205116
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.107.116402
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.4790171
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.107.116805
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.94.014118
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.4864044
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.65.113102
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.73.155425
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1209/0295-5075/93/57002
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/srep08460
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1039/C3EE41622D
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1116/1.3071947
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/sia.2097
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0022-3697(58)90107-0
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0022-3697(59)90061-7
|9 -- missing cx lookup --
|2 Crossref


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21