001     859721
005     20210130000354.0
024 7 _ |a 10.1063/1.5022379
|2 doi
024 7 _ |a 2128/21334
|2 Handle
024 7 _ |a WOS:000433944800007
|2 WOS
024 7 _ |a altmetric:39081800
|2 altmetric
037 _ _ |a FZJ-2019-00558
082 _ _ |a 600
100 1 _ |a Conti, G.
|0 0000-0003-3174-2691
|b 0
245 _ _ |a Characterization of free-standing InAs quantum membranes by standing wave hard x-ray photoemission spectroscopy
260 _ _ |a Melville, NY
|c 2018
|b AIP Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1548142034_13649
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Free-standing nanoribbons of InAs quantum membranes (QMs) transferred onto a (Si/Mo) multilayer mirror substrate are characterized by hard x-ray photoemission spectroscopy (HXPS) and by standing-wave HXPS (SW-HXPS). Information on the chemical composition and on the chemical states of the elements within the nanoribbons was obtained by HXPS and on the quantitative depth profiles by SW-HXPS. By comparing the experimental SW-HXPS rocking curves to x-ray optical calculations, the chemical depth profile of the InAs(QM) and its interfaces were quantitatively derived with ångström precision. We determined that (i) the exposure to air induced the formation of an InAsO4 layer on top of the stoichiometric InAs(QM); (ii) the top interface between the air-side InAsO4 and the InAs(QM) is not sharp, indicating that interdiffusion occurs between these two layers; (iii) the bottom interface between the InAs(QM) and the native oxide SiO2 on top of the (Si/Mo) substrate is abrupt. In addition, the valence band offset (VBO) between the InAs(QM) and the SiO2/(Si/Mo) substrate was determined by HXPS. The value of VBO = 0.2 ± 0.04 eV is in good agreement with literature results obtained by electrical characterization, giving a clear indication of the formation of a well-defined and abrupt InAs/SiO2 heterojunction. We have demonstrated that HXPS and SW-HXPS are non-destructive, powerful methods for characterizing interfaces and for providing chemical depth profiles of nanostructures, quantum membranes, and 2D layered materials.
536 _ _ |a 522 - Controlling Spin-Based Phenomena (POF3-522)
|0 G:(DE-HGF)POF3-522
|c POF3-522
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Nemsak, Slavomir
|0 P:(DE-Juel1)164137
|b 1
|e Corresponding author
700 1 _ |a Kuo, C.-T.
|0 0000-0001-7721-6481
|b 2
700 1 _ |a Gehlmann, M.
|0 P:(DE-Juel1)161368
|b 3
700 1 _ |a Conlon, C.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Keqi, A.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Rattanachata, A.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Karslıoğlu, O.
|0 0000-0003-4018-4572
|b 7
700 1 _ |a Mueller, J.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Sethian, J.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Bluhm, H.
|0 P:(DE-Juel1)172019
|b 10
700 1 _ |a Rault, J. E.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Rueff, J. P.
|0 0000-0003-3594-918X
|b 12
700 1 _ |a Fang, H.
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Javey, A.
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Fadley, C. S.
|0 P:(DE-HGF)0
|b 15
773 _ _ |a 10.1063/1.5022379
|g Vol. 6, no. 5, p. 058101 -
|0 PERI:(DE-600)2722985-3
|n 5
|p 058101 -
|t APL materials
|v 6
|y 2018
|x 2166-532X
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/859721/files/1.5022379.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/859721/files/1.5022379.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:859721
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)164137
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)172019
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-522
|2 G:(DE-HGF)POF3-500
|v Controlling Spin-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b APL MATER : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-6-20110106
|k PGI-6
|l Elektronische Eigenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-6-20110106
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21