

Abstract

The NEST Modeling Language (NestML, [PRB+16]) is a domain-specific modeling lan-
guage developed with the aim to provide an easy to use framework for the specification
of executable NEST simulator models [GD07]. Since its introduction in the year 2012,
many concepts and requirements were integrated into the existing toolchain, while the
programming language Java as the underlying platform remained almost untouched, mak-
ing maintenance and extension of the framework by neuroscientists a disproportionately
complex and costly process. This circumstance contradicts the basic principle of NestML,
namely to provide a modular and easy to extend modeling language for the neuroscientific
domain.

More than 90% of the overall costs arising during the development and usage of soft-
ware systems originate in the maintenance phase [MHDH13], a circumstance which makes
foresighted planning and design of software systems a crucial part of a software’s life-
cycle. While the effects of errors and bad design in programming in the small can be
mostly mitigated by using appropriate concepts, e.g., data abstraction and modulariza-
tion, wrongheaded decisions concerning the overall architecture or platform make the
software’s operation costly in the long term and affect the development over its whole life
cycle [Wes02]. Here, reengineering and especially the changing of the environment or
platform of the existing systems is the approach of choice given the fact, that systems often
use no longer supported components, contain errors in the overall foundation or simply do
not correspond to the existing requirements.

This report deals with the reengineering of the NestML tools collection and its migration
to Python [van95] as a new target platform. Given Python’s popularity in the neuroscien-
tific domain, a migration benefits the usability as well as integration into existing systems,
facilitates extensions by neuroscientists and makes usage of bridge technologies unneces-
sary. In order to accelerate the development and ensure modularity as well as maintain-
ability of the reengineered software, the MontiCore Language Workbench [KRV10]
will be used and extended by Python as a new target platform for code generation.

The material in this technical report is based largely on the Master Thesis by Konstantin
Perun, which was submitted to the Chair of Software Engineering at RWTH Aachen
University on April 9, 2018.

ii

Contents

1 Introduction 1

1.1 Research Question . 4
1.2 Structure of the Report . 5

2 Fundamentals 7

2.1 Domain-Specific Modeling Languages . 7
2.2 Methodology and Reuse of Components . 16

3 The model-processing Frontend 21

3.1 Lexer, Parser and AST classes . 21
3.2 Symbol and Typing System . 29
3.3 Semantical Checks . 37
3.4 Assisting Classes . 45
3.5 Summary: Model-processing Frontend . 51

4 The Generating Backend 53

4.1 AST Transformations and Code Generation 53
4.2 Summary: The code-generating Backend . 65

5 Extending PyNestML 67

5.1 Modifying the Grammar . 67
5.2 Adding Context Conditions . 68
5.3 Modifying the code-generating Backend . 70

6 The MontiCore Language Workbench 73

6.1 The Workflow of MontiCore . 73
6.2 Extension of MontiCore . 76

7 Tutorial 87

8 Conclusion and Future Work 91

9 PyNestML Grammar 93

List of Tables 105

List of Figures 105

iii

Chapter 1

Introduction

The brain is by far the most complex part of the human body [Nol02]. With approx-
imatively 109 - 1012 neurons [HH09] it defines humans’ behavior and consciousness as
well as the perception of the environment. Although its capability to repair damages
and anomalies to a certain degree by itself [KSJ+00], external involvement is still often re-
quired to prevent natural processes such as Alzheimer or repair damaged tissue. Given the
complexity and especially the size of the overall structure, a fundamental and in-detail un-
derstanding of processes and structures is essential to conduct a correct treatment. While
first approaches to gain the required insights were focused on the extraction of samples,
making experiments on living test subjects necessary, new approaches as emerged in the
last decades since the introduction of computer systems made this kind of experiments
partially obsolete. With computational science as the third pillar of science (besides the-
oretical and experimental science, [RBF+05]), the behavior and structure of organs and
complex systems can be simulated without the need for extraction of tissue or other in-
volvements of living test subjects. Especially the discipline of computational neuroscience
was able to gain many insights by simulating the brain of living organisms [DA01].

The overall complexity of the brain, as well as the sheer number of neurons with their in-
terconnections via synapses make efficient simulations and usage of resources necessary to
gain insights into such a complex system. Over the years many simulators and simulation
environments were developed, from stand-alone solutions with an easy to use interface such
as Neuron [Car07], through to programming language libraries with a more clear focus on
performance and extensibility. The Neural Simulation Tool (NEST, [GMP13]) represents
such a library implemented in C++ and is currently under development as a part of the
EU’s Human Brain Project [AEM+16]. However, given its underlying platform, a funda-
mental understanding of programming languages is required to create new simulations and
models or extend the existing behavior with new details. Concrete neuron models have
therefore to be provided as implementations in C++. Here, Domain-Specific Modeling
Languages (DSLs, [VDKV00]) have been established as a possible approach to abstract
from programming language-specific concepts and focus solely on domain-relevant details.
By hiding complex routines on the model in an easy to use framework, DSLs enable the
user to use syntax and concepts common to the corresponding domain in order to define
arbitrary specifications. The task of deriving equivalent models in the target program-
ming language or environment is delegated to a set of tools, an approach which prevents
error-prone and costly transformations by hand.

The Nest Modeling Language (NestML, [Plo18, PRB+16]) was developed with the aim
to support the creation of models for the NEST simulator and therefore to facilitate
the interaction of neuroscientists with the simulation environment. Given its clear intent,

1

of the represented language as a blueprint for the generation of code. Adjustments to the
represented language are therefore directly integrated into the formal specification of the
modeling language, while a set of tools is used to automatically derive the corresponding
code base. However, while individual tools generate code which is applicable by itself,
often the problem of incompatible interfaces of used components arises. Generated com-
ponents of a DSL have to be adjusted by hand in order to be integrated into an existing
system - a proceeding which contradicts the basic idea of generative software engineering.
To solve this problem the concept of a Language Workbench [SSV+a] is employed. Instead
of generating components such as lexers and parsers by individual tools, a language work-
bench represents a framework which combines all required tools and processes in a single
entity. Moreover, the interfaces of all generated components are automatically adjusted
to support integration and interaction, avoiding a modification by hand and enabling an
out-of-the-box usage. A language workbench can therefore be used to ease the develop-
ment of a language even further, by integrating all required tools in a single system. In
order to apply all these principles, the state-of-the-art framework MontiCore [KRV10] was
used for the engineering of the initial NestML framework.

Despite the high level of applicability of NestML and the quality of the overall software
system, there exists a major drawback in the available implementation: Currently, Monti-
Core supports only the programming language Java [AGH00] as a target for the generation
of all required DSL components, making Java the underlying platform of NestML and its
supporting toolchain. However, Java is not prevalent in the computational neuroscience
[MBD+15], a circumstance which results in many disadvantages during its usage. On the
one hand, it prevents neuroscientists from interacting with the existing implementation of
NestML in a white-box manner, making individual modifications and extensions a task for
stakeholders outside of the domain. On the other hand, it also complicates the integration
of the framework into existing ecosystems. Additional bridge technologies such as Jython
[JBW+10] have to be used to enable interactions with existing tools, a solution which is
only applicable or desired in a limited set of cases. All this leads to a situation where
NestML has to depend on additional tools to enable an easy installation and usage. In
order to deliver all required dependencies, subsystems, and platforms in a single image the
virtualization tool Docker [doc17] was employed. In addition to enabling the execution
on an arbitrary system, it also results in disproportionately many tools and technologies
required just in order to provide a compact and easy installation. However, the usage of
virtualization tools solves only the problem of required dependencies and platforms. The
underlying problem of complex or impossible integration with PyNN [DBE+08], PyNEST
[EHM+09], SymPy [JČMG12] and other tools written in common neuroscientific languages
is still prevalent.

Here, the reengineering of an existing system and a migration to a new platform has
been established as a possible solution to overcome the above-mentioned problems. While
resulting in additional initial effort in order to migrate the existing code base to a new
platform, a reengineering of the system represents an investment which pays off in the long
run. Without the need for bridge technologies and additional tools, the software becomes
easier to maintain, while adjustments and extensions can be directly integrated without
depending on platform external components. Moreover, by selecting a platform according
to the target audience of the software, here it is possible to involve domain experts into

3

Chapter 1 Introduction

the future development process.
In the case of NestML, the programming language Python [van95] was selected as a

new platform for the existing software systems. Although the computational neuroscience
domain and especially its software frameworks are built upon several platforms, amongst
others the computing environment MATLAB [MAT17] and the general purpose program-
ming language C++, a brief survey revealed that Python is able to provide a good trade-off
between simplicity and expressiveness as required to migrate the existing toolchain. While
MATLAB does not provide several of the required components, including tools for a pro-
cessing of textual models, C++ represents a rich and powerful programming language
which requires a certain level of expertise for maintenance and extension of the code base.
Here, Python includes all required components and tools while persevering an easy to read
syntax and structuring of the software, concepts which benefit an easy to maintain frame-
work. Moreover, several of the components as integrated into NestML are only available in
Python, including the symbolic mathematics library SymPy, making Python the language
of choice for NestML.

A first, naive approach is the migration of the existing code base by means of completely
handwritten code. However, MontiCore enables the generation of all required components,
from the model-processing frontend consisting amongst other of a lexer and parser [Lou],
through to subsystems which ensure partial semantical correctness of provided models by
means of symbols tables and context conditions [HMSNR15]. Therefore, to avoid error-
prone manual writing of code and ensure an accelerated reengineering process of NestML
by means of existing technologies, MontiCore has to be extended and provided with all
required modifications to support Python as a new platform for a component generation.

While a sole platform migration of NestML represents a valid approach by modifying
the internal structures without altering the external behavior, here it can also be beneficial
to re-evaluate the architecture and recollect all requirements to the existing system. Many
components, as integrated into the initial implementation, may no longer be required.
Other components can be replaced by more efficient or easy to maintain solutions. In
conclusion, the process of a technology migration can be interleaved with a refactoring of
the existing concepts. In the case of NestML, a reengineering process also requires the
reevaluation of existing supporting tools and their applicability in the given situation.

1.1 Research Question

The overall research question of this work is:

How can MontiCore be adapted to support a new target platform for
component generation exemplified on the use case of NestML?

The generative approach can only be used up to a certain point, at which problem-specific
concepts can no longer be completely specified by a model. The goal is, therefore, to
determine at which point a manual implementation has to be used instead of adjusting
and parameterizing existing tools. Here, especially the question of the trade-off between
parametrization effort and overall reduction of manual work by generating the correspond-
ing elements is important. This work will therefore demonstrate which Python-specific
DSL components can be generated by MontiCore, and which parts of the software have

4

1.2 Structure of the Report

to be written by hand. This trade-off becomes even more significant if we consider a pos-
sible future life cycle of the software and the intention behind its development. Software
which is developed in a joint effort with domain experts or a community is expected to
be changed often and adjusted to new requirements. Here, an automated generation of
components can be beneficial, making all modifications focused on the design level.

The main contributions of this report are:

• How can a reengineering process of a DSL be conducted, exemplified on the concrete
use case of the neuroscientific modeling language NestML.

• How the MontiCore Language Workbench can be extended to support a new target
platform for component generation.

• Which components of an existing software should be re-generated by the adapted
tools and which elements should be rewritten by hand.

1.2 Structure of the Report

The remainder of this report is structured as follows:

Chapter 1 introduces the overall context of the work, the difficulties and the in-
tended solution.

Chapter 2 provides a concise introduction to the concept of Domain-Specific Mod-
eling Languages (DSL) and a set of components reusable during their construction.

Chapter 3 shows how the model-processing frontend of NestML has been refactored
and migrated to Python as a new platform.

Chapter 4 focuses on the NEST code generator and demonstrates how this com-
ponent was reengineered.

Chapter 5 illustrates, based on a hypothetical use case, how the reengineered frame-
work can be adjusted to new requirements.

Chapter 6 shows how the MontiCore Language Workbench can be extended to
support a new target platform for code generation, thus accelerating the integration
of new requirements into NestML.

Chapter 7 provides an introduction to the usage of the reimplemented framework.

Chapter 8 concludes the report with a summary and an outlook to future work.
The core aspects of the report are once more discussed.

5

Chapter 2

Fundamentals

The concepts of refactoring and reengineering require an in-depth understanding of a
software’s functionality. Here, the key principle is to preserve the outer behavior, while
the inner structure of the system is modified to adhere to higher quality standards or
other goals. In the case of a domain-specific modeling language, the overall architecture of
the processing tools was silently standardized to a component-based and non-monolithic
shape. This architecture, as well as the general approach to how a complex DSL-processing
framework can be decomposed into a set of individual components and subsystems, will
therefore be presented in section 2.1. Subsequently, section 2.2 will introduce a set of basic
reengineering concepts and evaluate which supporting components can be used in the use
case of NestML.

2.1 Domain-Specific Modeling Languages

A Domain-Specific Modeling Language (DSL, [Fow10]) is a specification language which
provides appropriate concepts and notations for the modeling of problems in a specialized
domain [VDKV00]. In contrast to General-Purpose Languages (GPL, e.g., UML [Rum11,
CE97]), which can be used in a wide range of application fields, but do not provide
specific notations and concepts as required for the modeling of very specific problems,
DSLs are designed and designated for a specialized task where an in-detail specification of
the problem and all its domain-specific concepts is required out of the box. Physical units
are a common example of a concept which has to be supported by a modeling language in
the field of neuroscience. Although possible, an extension of a general-purpose modeling
language by such a specific concept would contradict the overall idea of a GPL, namely to
provide an abstract and domain-unspecific concept for the modeling of problems.

Specifications of problems in a given DSL are often not directly executable but rather
of a declarative nature. Consequently, such declarations represent the initial input to a
set of tools which process the given model and generate a refined, executable representa-
tion. This DSL-processing workflow consists of several steps as illustrated in Figure 2.1.
Here, one of the key advantages is the use of general-purpose programming languages as
a common interface for the generation of code. Generating directives which can be di-
rectly executed by the CPU is a process which requires a highly specialized knowledge
of soft- and hardware concepts. In order to avoid such a processing of a model, a GPL
is instead selected as a target for code generation. On the one hand, the source code as
generated from textual models can then be further processed by existing tools as available
for the respective programming languages, e.g., editors, verifiers or solvers. On the other

7

2.2 Methodology and Reuse of Components

implements the concept of program generators [Hem93]. Design patterns [VHJG95] on
the architecture and implementation level represent a different approach to reuse existing
knowledge during the creation of new software. Here, instead of providing concrete code
which can be integrated into the project, a general idea is given how certain components
have to be designed in order to achieve a higher level of maintainability and modular-
ity. The pipelining of a read-in model as implemented in the overall DSL approach, cf.
section 2.1, represents a modified instance of the pipes and filter pattern [BHS07], while
all AST classes generated by MontiCore [RH17] contain an implementation of the builder
pattern [BHS07]. The utilization of patterns represents a reuse approach which has to
be regarded independently of the concrete domain and use case, making it a technique
which should always be applied during the engineering of software. The remaining part of
this chapter will, therefore, focus on more specific techniques, approaches, and tools which
can be employed to accelerate and ensure certain quality standards of the reengineered
NestML framework as introduced in chapter 3.

Chapter 1 outlined how MontiCore can be used to generate a set of components rep-
resenting the overall infrastructure required to create a model-processing frontend. Here,
no additional tools and libraries are required to be able to process a given model to the
corresponding internal representation. In contrast to the generated AST classes which are
completely independent of concrete tools, the generated lexer and parser require the Antlr
runtime environment [PLW+00], making it a hard dependency whenever the generated
code shall be used. Besides MontiCore and in consequence Antlr, many other lexer and
parser generators can be employed. The Calculator Modeling Language (CML) as intro-
duced in section 2.1 has been used to conduct a brief survey on the usability of other tools
which can be applied to reuse existing technology. For this purpose, two additional lexer
and parser generators were tested for their applicability.

The Ply [pyt17b] lexer and parser generator represents a Python implementation of
the Lex and Yacc [LMB92] tools. Here, the overall grammar of a language is defined as
Python code and is therefore not contained in a separate artifact. Moreover, each token
has to be provided with a definition and an executable function in order to achieve a
specific processing. Figure 2.10 visualizes a single definition of a rule as used to enable
the parser to recognize an addition of two values. The grammar rule, as well as the
corresponding processing, is defined in a single method. The use case of CML has shown
that while Ply provides a highly customizable behavior where many components can be
individually adapted to specific needs, it also requires an in-depth understanding of the
general lexer and parser concepts to apply all required principles correctly. Moreover,
given the monolithic definition of the grammar, where all components are defined in a
single Python artifact, this approach prevents an easily maintainable structure of the
software where elements can be adjusted individually. Modularity of the components on
the artifact level can therefore not be enforced.

PyParsing [McG07] is yet a different tool which was tested for its applicability. Here,
grammar and parser rules are defined as Python code and consist of calls to individual
functions representing token definitions and sub-rules. Each rule corresponds to the return
value of a specific function. Figure 2.11 illustrates the definition of a rule as used to the
define addition of two values. This approach represents a valid alternative to the definition
of a grammar as a composition of rules and tokens in a specific syntax and as a separate

17

2.2 Methodology and Reuse of Components

expressive concept for a definition of grammars, it also enables the user to directly influence
the generated lexer and parser with handwritten code. Moreover, by encapsulating the
definition in a separate file, a clear separation of concerns and single responsibility is
achieved. Here, the grammar defines the what, while the generated lexer and parser the
how, instead of mixing both concepts in a single artifact. Although Ply and PyParsing
can be used to generate or implement a lexer and parser, these libraries do not feature
a concept for the generation of additional components as required to store and interact
with a read-in model, among others the corresponding AST data structure and visitors.
MontiCore and its concept for the generation of components is therefore a clear favorite
for the engineering of a DSL.

As discussed in section 2.1, most components required in the transformation and func-
tion library cannot be generated or reused and consequently have to be implemented by
hand. In the case of NestML, only a subsystem for the processing and storage of physical
units as often required in the computational neuroscience has been found to be applicable.
For this purpose, two existing implementations were tested.

Sympy [JČMG12] and especially its Physics package represents a possible implemen-
tation for the handling of physical units. Each unit is stored as an object consisting of
several properties describing its structure. A physical unit is represented by a base, e.g.
the electric potential in volt, and the corresponding magnitude definition. By encapsu-
lating those properties in a single object and providing an overwritten behavior for the
standard arithmetic operations, this module enables the calculation and derivation of new
physical units, a concept which is often required whenever type checking of expressions
is intended. However, one of the key drawbacks of using Sympy’s physics module is the
handling of equality checks for combined and complex units. While atomic parts of a given
expression in a neuron model tend to have simple units, e.g., a single variable storing a
value in millivolt, compound expressions often results in complex, combined units. The
selected unit system should be able to derive new units by combining existing ones. How-
ever, while SymPy supports such a handling, the concept of equality is lost. Derived units
such as newton and the combination of their base units kg ∗m/s2 are not recognized as
being equal. This circumstance prevents a valid type checking of expressions whenever
physical units are involved.

The AstroPy [ART+13] module implements a similar approach by storing units as com-
posable objects. Besides providing a similar concept for arithmetic operations, it is also
possible to define new physical systems, i.e., systems where a specified set of units is re-
garded as the base units. Moreover, each unit object stores an additional set of properties
as often required during a type checking routine. Utilizing these properties, it is easily
possible to derive for a given unit all available, equivalent representations. In conclusion,
the aforementioned problem of inequality between newton and kg∗m/s2 is no longer given.
Instead, the underlying base units of a compound one are compared, thus equality for ar-
bitrary combinations can be ensured. The clear separation of the units and magnitudes
enables a type checking system to regard units which only differ in a prefix as being equal.
AstroPy and its underlying units type system are therefore the most fitting solution for
processes where derivation of new units and equality checks represent the main goal.

The last component which can often be reused during the engineering of a DSL is a
generator engine as employed in the code generator. Here, a vast amount of solutions

19

Chapter 3

The model-processing Frontend

The previous chapter introduced the overall architecture of a DSL, all required model-
processing steps as well as a set of reusable components. These fundamentals will now be
used to reengineer the existing NestML framework and perform a platform migration to
Python. In this chapter we will demonstrate how the model-processing frontend has been
reeingeered. To this end, it is first necessary to parse a textual model to an internal repre-
sentation by means of a lexer and parser. Section 3.1 introduces this subsystem together
with a collection of AST classes and the ASTBuilderVisitor, a component which extracts
an AST representation from a given parse tree. Subsequently, the CommentCollectorVisi-
tor and its underlying process responsible for the extraction of comments from the source
model and their correct storing in the AST is demonstrated, making the generation of self-
documenting models possible. Having a model’s AST, it remains to check its semantical
correctness. For this purpose, section 3.2 will first introduce a data structure for storing
of context-related details, namely the Symbol classes. Here, we also show how modeled
data types can be represented and stored. In order to provide a basic set of constants and
functions predefined in NestML, the predefined subsystem is implemented. With a parsed
model stored in an AST and a structure for storing context information, the frontend pro-
ceeds to collect context details of the model. Demonstrated in section 3.3 together with
the SymbolTable and a set of context conditions, the ASTSymbolTableVisitor ensures se-
mantical correctness. After all context conditions have been checked, the frontend’s model
processing is complete. All steps outlined above are orchestrated by the ModelParser class
which represents the interface to the model-processing frontend. The chapter is concluded
in section 3.4 by an introduction to the set of assisting components. Figure 3.1 subsumes
the concepts demonstrated in this chapter. In order to avoid ambiguity, we refer to the
reengineered framework as PyNestML.

3.1 Lexer, Parser and AST classes

As introduced in section 2.1, the first step during the processing of a textual model is
the creation of an internal representation by means of an AST. For this purpose, it is
first necessary to implement a lexer and parser which read in a textual model and create
a respective parse tree. However, the parse tree represents an immutable data structure
where no data retrieval and modification operations are provided, making required trans-
formations and interactions difficult. Consequently, a refined representation in the from
of an AST has to be derived. It is therefore necessary to implement a collection of AST
classes used to store individual elements of the AST. In order to retrieve all required in-

21

Chapter 3 The model-processing Frontend

implemented in PyNestML to enable a storage of semantics and types.
A TypeSymbol represents a type as used in declarations and function signatures, and

can be either a primitive or a physical unit. In its current state, the type system supports
the primitive types integer, real, void, boolean and string. Whether a type is a primitive is
represented by a boolean field for each type, while physical units are stored as references
to the corresponding UnitType objects. The UnitType class is a simple wrapper for the
AstroPy unit system as introduced in section 2.2 and is used to couple an AstroPy unit
object [ART+13] with a processable name as well as equality- and data-access operations.
The final attribute of the TypeSymbol class is a boolean indicator whether a buffer or
non-buffer type is represented. As indicated in chapter 9, spike buffers can be declared
with an arbitrary data type. As we will demonstrate in chapter 4, the backend utilizes
different approaches for the generation of buffer and non-buffer types.

The VariableSymbol class represents the second type of symbols. Each VariableSymbol
object symbolizes a variable or constant as defined in the source model. It stores the
type of block in which it has been declared as an element of the BlockType enumeration
type. According to the grammar, each variable symbol can be defined in a state block,
the parameters or internals block, the initial values or equations block. Moreover, given
the fact that ports are regarded as variables with stored values, the block types input
buffer current, input buffer spike and output are provided. Finally, the type system is
able to mark variables as being declared in a local block, e.g., a user-defined function
block or the update block, or as a predefined element of PyNestML, e.g., the global time
variable t. The type of a block in which the element has been declared is required for the
correct generation of target platform-specific code as introduced in chapter 4. PyNestML
marks variables defined in the equations block as being shapes or equations. Variables
defined in the input block are marked as being a buffer, while all other elements are
simple variables. To this end, the VariableType enumeration type is implemented. By
utilizing such a specification it is easily possible to sort symbols according to the property
they represent. A corresponding getter function can then be used to retrieve buffers or
shapes as required in semantical checks and code generation, cf. section 3.3 and chapter 4.
The remaining attributes represent a collection of characteristics which are common for
declared elements: A variable symbol can have a vector parameter indicating that a vector
variable is given. The boolean fields is-predefined, is-function and is-recordable indicate
whether the elements have been marked by keywords in the source model or represent
predefined concepts, i.e., an element which is always available in PyNestML as in the
case of the global time variable t. The is-conductance-based marks buffers with the unit
type Siemens1, while the type symbol stores a reference to an object representing the
type of the variable. The declaring expression as well as the initial value attributes are
used in the context of equations. The declaring expression field stores a reference to the
expression denoting how new values of the equation have to be computed. Analogously
the initial value stores the starting value of a differential equation. In the case that a non-
equation symbol is stored, the declaring expression is used to simply store a right-hand
side expression.

The FunctionSymbol is the last type of symbol and stores references to pre- and user-
defined functions. Consequently, each symbol consists of a name of the function, the return

1conductance-based buffers are processed differently during code generation in NEST

30

3.2 Symbol and Typing System

to denote the types of the elements. The PredefinedVariables class stores all predefined
variables available in PyNestML. In its current state, PyNestML provides a set of prede-
fined variables often required in neuroscientific models, including the global time constant
t for the time past the start of the simulation, and Euler’s number e. Moreover, PyNestML
features a concept for unit variables. Consequently, it is also possible to utilize the name
of a physical unit as a variable. By utilizing such a concept it is easily possible to state
expressions representing new, compounded units as part of a computation. For instance,
a given expression 55 ∗mV/nS is treated as semantically as well as syntactically correct.
By handling units as predefined variables, the framework is able to apply the same set of
arithmetic rules as for all other types of expressions, cf. chapter 9. Compound physical
units are therefore created by stating defining arithmetic expressions with basic units. All
units as defined in the PredefinedTypes class are therefore also registered as predefined
variables. However, in contrast to derived physical units which are automatically stored in
the set of predefined types, PyNestML does not add new unit variables to the predefined
variables. Such a handling is not required since complex arithmetic combinations of units
are treated as an aggregation of basic units, consequently, only variables for basic units
are required. The PredefinedVariables class features methods for the retrieval of symbols
for predefined variables as well as a getVariable method which can be used to detect if
a variable is predefined. In the case that a handed over name does not correspond to a
variable, none is returned. In this case, the client method has to take care of correct steps.
In contrast to types, variable symbols located in concrete models are never added to the
set of predefined ones given the fact, that these properties are local to their context and
should not be visible to other models. PyNestML reports declarations of variables with
the same name as one of the predefined variables as an error, cf. section 3.3.

Analogously to the PredefinedVariables, PyNestML uses the PredefinedFunctions class
to store all predefined functions. In its current state, PyNestML supports 21 different
mathematical and neuroscientific functions. As already introduced, each function symbol
consist of a name, the type of the return value as well as a list of parameter types. All
predefined functions are therefore individually initialized and stored. In order to ensure
a correct type, type symbols managed by the PredefinedTypes class are retrieved and
references stored. The getFunction method can then be used to request the function
symbol for a specified name.

With a data structure for the representation of types as well as a basic collection of
fundamental types, PyNestML is now able to enrich the previously constructed AST by a
new property, namely the concrete type of all elements. For this purpose, all AST nodes
which have to be specified by a type are now, after the AST has been constructed by the
lexer and parser, extended by a reference to a TypeSymbol object. Based on the type of
AST node for which the type has to be derived, this step has been separated into two
different phases in order to enforce a clear separation of concerns. Figure 3.13 subsumes
the type derivation subsystem.

The simpler case is the handling of data type declarations of constants and variables
defined in the model. Given the grammar for the declaration of a type where no plus or
minus arithmetic operators are supported, this processing can be completely implemented
in a single method. This process is therefore encapsulated in the ASTUnitTypeVisitor
class which derives the concrete type symbol of a type represented by an ASTDataType

33

Chapter 3 The model-processing Frontend

context, namely the SymbolTable and Scopes classes. In order to fill these components with
context information, a collecting process implemented in the ASTSymbolTableVisitor is
used. After the context of a model has been established, it remains to check for correct
semantics. This task is delegated to the CoCosManager, a component which manages a
collection of context conditions, cf. section 2.1. Figure 3.16 illustrates which components
have been implemented to store, collect and check semantical details of a model.

The SymbolTable class has been implemented analogously to the concept introduced in
section 2.1. This component represents a container which maps neuron names to their
respective global scope. The scope of an AST object is hereby an element of the Scope
class which stores a reference to its parent scope, leading to a tree-like structure of the
scope layering. Utilizing such a structure accelerates the resolving of symbols and eases
the working with the context of a model. All elements contained in a scope are hereby
stored in a list. Each element is either a Symbol or a sub-Scope. The final two attributes
of the Scope class store details regarding the type of the scope and the source location.
The former is used to enable an easy to conduct filtering of scopes. For this purpose the
enumeration type ScopeType is implemented. Each scope is marked as being global, update
or function. All elements defined outside the update and function block are stored in a
neuron’s top-level scope, while the update and function block can be used to open new
sub-scopes. The source location attribute contains the position enclosed by the scope.
Storing this detail is beneficial especially in the case of error reports and troubleshooting
of textual models.

Besides data retrieval and manipulation operations, the Scope class features several aid-
ing methods: The getSymbolsInThisScope method can be used to retrieve all symbols in
the current scope, while getSymbolsInCompleteScope also takes all shadowed symbols in
ancestor scopes into account. The getScopes operation can be used to return all sub-scope
objects of the current scope. In order to retrieve the top scope of a neuron, the getGlob-
alScope method can be used. Finally, the resolve methods are provided. The Scope class
implements two different operations and supports a more precise retrieval of information.
The resolveToAllScopes method can be used to retrieve all scopes in which a symbol with
the handed over name and symbol kind has been declared. The resolveToAllSymbols re-
turns the corresponding symbols. These methods can be used whenever shadowing of
variables should be handled and all specified symbols returned. The respective single in-
stance methods resolveToScope and resolveToSymbol can be used to return the first defined
instance of a symbol specified by the parameters. Starting from the current scope, these
methods first check if the specified symbol is contained in the scope. If such a symbol
is found, it is simply returned, otherwise, the same operation is performed on the parent
scope. In conclusion, this method can be used to check if a used element has been declared
in the spanned scope of the current block. Figure 3.17 illustrates the resolution process.

The SymbolTable class represents a data structure which has to be instantiated and
filled with the context information of concrete models. PyNestML delegates this task to
the ASTSymbolTableVisitor class, a component which implements all required steps to
fill the symbol table with life. The overall interface of this class consists of the static
updateSymbolTable method which expects the concrete AST whose context shall be ana-
lyzed and updated accordingly. Based on the visited node, this operation invokes one of
the following processings: In the case that an ASTNeuron node is visited, a new neuron

38

Chapter 3 The model-processing Frontend

wide scope is created. Moreover, in order to fill the scope with predefined properties which
are always available in the context, references to elements of the predefined subsystem are
stored. This step ensures that the resolution process of predefined and model-specific
variables becomes transparent and accessible over the neuron’s scope. It is therefore not
required to access individual collections of the predefiend subsystem to get the respective
elements. Instead, all symbols required by a model are stored in its respective top-level
scope and the PredefinedTypes collection. Moreover, given the structure of the visitor, it
is not directly possible to indicate certain details to processed child nodes, e.g., the top
level scope of the currently handled neuron or which type of block3 is processed. While
the former is solved by a top-down update process as illustrated in Figure 3.18, i.e., before
a node is visited, its scope is updated to the parent’s scope, the latter requires storage of
additional details. Consequently, the type of the currently processed block is stored and
represented as a value of the BlockType enumeration, cf. section 3.2. Whenever a block of
statements is entered, the type of the block is simply stored and removed after the block
has been left. Newly created symbols inside the block check this value and derive the
information in which type of block they were created. Such a processing is required in
order to determine the ScopeType of each created (sub-)scope as well as the BlockType of
created symbols4.

The creation of new symbols and scopes is only required in a limited set of cases. Most
often, only the scope reference of a handled element has to be updated. As shown in
Figure 3.18, this step is done in a reversed order: The neuron’s root AST node stores a
reference to its scope, and subsequently sets the scope of its child nodes to the parent
scope. In the case that a block is detected which has to span its own local scope, i.e., an
update or function block, a new Scope object is created and stored in the parent scope.
This new object is then set as the scope of the nested block and the process is continued
recursively. Thus, whenever a scope-spanning block is detected, a new scope is stored in
the parent scope, and used in the following as the current scope. The individual visit
methods of the ASTSymbolTableVisitor therefore first update the scopes of their child
nodes before a further traversal is invoked. Constants and variables declared in the model
require an additional step. Here it is necessary to create a new Symbol object representing
the declared element. Concrete information regarding the specifications of the symbol is
stored in the current AST object, while the TypeSymbol can be easily retrieved by in-
specting the ASTDataType child node. Here we see exactly why a preprocessing by the
ASTDataTypeVisitor, cf. section 3.2, is required. Having an AST where all nodes have
been provided with their respective TypeSymbols, the ASTSymbolTableVisitor can now
easily retrieve this information and use it in VariableSymbols. All required details are
therefore simply retrieved from the corresponding element, and a new VariableSymbol is
created and stored in the current scope. In the case of user-defined functions, this process
is performed analogously, although here a FunctionSymbol is created. The ASTSymbol-
TableVisitor executes this process for the whole AST and populates the symbol table with
scope details. As a side effect, the scopes of all AST objects are updated correctly and
can now be used for further checks.

After a neuron’s scopes have been adjusted, the final step of the model-processing fron-

3state, function, equations etc.
4a detail required for appropriate code generation, cf. section 3.2

40

Chapter 3 The model-processing Frontend

5. CoCoCorrectOrderInEquation: Checks whether a differential equation has been stated
for a non-derivative, e.g., Vm = V ′

m
instead of V ′

m
= V ′

m
.

6. CoCoCurrentBuffersNotSpecified : Checks that current buffers are not specified with
the keyword inhibitory or excitatory. Only spike buffers can be further specified.

7. CoCoEachBlockUniqueAndDefined : Checks that mandatory update, input and out-
put blocks are defined exactly once, and all remaining types of blocks are defined at
most once.

8. CoCoEquationsOnlyForInitValues: Checks that equations are only defined for vari-
ables stated in the initial values block.

9. CoCoFunctionCallsConsistent : Checks that all function calls are consistent, i.e., that
the called function exists and the arguments are of the correct type and amount.

10. CoCoFunctionHasRhs: Checks that all attributes marked by the function keyword
have a right-hand side expression.

11. CoCoFunctionMaxOneLhs: Checks that multi-declarations marked as functions do
not occur, e.g., function Vm, Vn mV = Vinit + 42mV . Several aliases to the same
value are redundant.

12. CoCoFunctionUnique: Checks that all functions are unique, thus user-defined func-
tions do not redeclare predefined ones.

13. CoCoIllegalExpression: Checks that all expressions are typed according to the left-
hand side variable, or are at least castable to each other.

14. CoCoInitVarsWithOdesProvided : Checks that all variables declared in the initial
values block are provided with the corresponding ODEs.

15. CoCoInvariantIsBoolean: Checks that the type of all given invariants is boolean.

16. CoCoNeuronNameUnique: Checks that no name collisions of neurons occur. Here,
only the names in the same artifact are checked.

17. CoCoNoNestNameSpaceCollision: Checks that user-defined functions and attributes
do not collide with the namespace of the target simulator platform NEST.

17. CoCoNoShapesExceptInConvolve: Checks that variables marked as shapes are only
used in the convolve function call.

18. CoCoNoTwoNeuronsInSetOfCompilationUnits: Checks across several compilation
units (and therefore artifacts) whether neurons are redeclared. Only invoked when
several artifacts are given.

19. CoCoOnlySpikeBufferWithDatatypes: Checks that only spike buffers have been pro-
vided with a data type. Current buffers are always of type pA.

42

3.3 Semantical Checks

20. CoCoParametersAssignedOnlyInParameterBlock : Checks that values are assigned
to parameters only in the parameter block.

21. CoCoSumHasCorrectParameter : Checks that convolve calls are not provided with
complex expressions, but only variables.

22. CoCoTypeOfBufferUnique: Checks that no keyword is stated twice in an input buffer
declaration, e.g., inhibitory inhibitory spike.

23. CoCoUserDeclaredFunctionCorrectlyDefined : Checks that user-defined functions are
correctly defined, i.e., only parameters of the function are used, and the return type
is correctly stated.

24. CoCoVariableOncePerScope: Checks that each variable is defined at most once per
scope, i.e., no variable is redefined.

25. CoCoVectorVariableInNonVectorDeclaration: Checks that vector and scalar vari-
ables are not combined, e.g. V + V vec where V is scalar and V vec a vector.

In the following we exemplify the underlying process on two concrete context conditions,
namely CoCoFunctionUnique and CoCoIllegalExpression. The former is used to check
whether an existing function has been redefined in a given model. With the previously
done work, this property can be easily implemented: Given the fact that in the basic
context of the language no functions are defined twice, the checkCoco method of the
CoCoFunctionUnique class simply retrieves all user-defined functions, resolves them to the
corresponding FunctionSymbols as constructed by the ASTSymbolTableVisitor and checks
pairwise whether two functions with the same name exist. In order to preserve a simple
structure of PyNestML, function overloading is not included as an applicable concept.
Thus, only collisions of function names have to be detected. If a collision has been detected,
an error message is printed and stored by means of the further on introduced Logger
class, cf. section 3.4. With the names of all defined FunctionSymbols (and analogously
VariableSymbols) it is easily possible to check whether a redeclaration occurred. Moreover,
the stored reference to the corresponding AST node can be used to print the position at
which the model is not correct, making troubleshooting possible. Figure 3.20 illustrates
the CoCoFunctionUnique class.

The second exemplified context condition CoCoIllegalExpression checks whether the
expected data type of elements and their corresponding expressions have the same value.
With the previously derived TypeSymbols of all AST nodes and the instantiated symbol
table, here a simple process becomes sufficient for an in-depth checking of correctly typed
models. To check correct typing of all required components, the assisting CorrectExpres-
sionVisitor is implemented, cf. Figure 3.20. This visitor implements the basic ASTVisitor
and overrides the visit method for nodes whose types have to be checked. In the case of
declarations and assignments, it resolves the variable symbol of the left-hand side variable
and retrieves the corresponding type symbol. For the right-hand side expression, the get-
TypeEither of the (simple) expression object is called. Finally, the equal method is used to
check whether both types are equivalent. Here, an additional check has been implemented:
Given the fact that most simulators disregard physical units, but work in terms of integers

43

3.4 Assisting Classes

for semantical correctness.

3.4 Assisting Classes

As opposed to the introduction of a typical DSL architecture in chapter 2, where semanti-
cal checks, as well as model transformations, were seen as a part of the function library, we
decided to follow a different approach during the reengineering of NestML. In the previous
section, checks for semantical correctness of a given model were already included in the
model-processing frontend instead of characterizing this component as an element of the
subsystem sitting between the frontend and the code generator. However, the architecture
as introduced in Figure 2.2 represents a recommendation and can be adjusted to individ-
ual use cases. We, therefore, decided to factor out the functionality normally contained
in the function library and instead delegate these components to the model-processing
frontend and the generating backend. The result of the frontend should, therefore, be an
AST representation of the model which has been checked for semantical and syntactical
correctness. Moreover, model transformations are most often of target-platform specific
nature, i.e., whenever several target platforms are implemented, it may be necessary to
implement several model transformations. As illustrated in Figure 3.21, it is beneficial
to regard model transformations as a part of the target-format generating backend and
encapsulate all components required for a specific target in a single subsystem. Follow-
ing these principles, the overall PyNestML architecture has been implemented slightly
different as presented in chapter 2: A rich and powerful frontend is followed by a small
collection of workflow governing and assisting components, which are in turn concluded
by several, independent code generators. In this section we will introduce components
sitting in between and governing the overall model-processing control flow and providing
assisting functionality. Although not crucial, these elements are often required to provide
a straightforward tooling as well as certain quality standards.

As introduced in the previous section, the ModelParser class reads in and checks a tex-
tual model for syntactical and semantical correctness. However, transforming the model to
an equivalent AST is only the first step in the overall processing. Figure 2.2 showed which
other steps have to follow and therefore to be chained and governed by an orchestrating
component. This task is handled by the PyNestMLFrontend class, a component which
represents the workflow execution unit and hides the model transforming process behind
a clearly defined interface.

Before the actual processing of the model can be started, it is necessary to handle all
parameters as handed over by the user, e.g., the path to the models. These parameters
tend to change frequently whenever new concepts and specifications are added. PyNestML
therefore delegates the task of arguments handling to the FrontendConfiguration class. By
utilizing the standard functionality of Python’s argparse5 module, the frontend configu-
ration is able to declare which arguments the overall system accepts, cf. chapter 7. The
handed over parameters are stored in respective attributes and can be retrieved by the cor-
responding data access operations. All attributes and operations are hereby static (class
properties) and can be accessed from the overall framework by simply interacting with the

5https://docs.python.org/3/library/argparse.html

45

3.4 Assisting Classes

condition is hereby directly invoked on the CoCosManager, cf. section 3.3. All errors are
reported and logged by means of the Logger class. If the developer mode is off, PyNestML
inspects the log and removes all neurons from the current collection which have at least
one found error. The adjusted collection is then handed over to the code generating back-
end. After all models have been processed, the overall log is inspected and stored in a
file if required. In conclusion, the PyNestMLFrontend class represents the overall work-
flow execution unit, cf. section 2.1, and combines the model-processing frontend and the
code-generating backend. Figure 3.22 subsumes the presented procedure.

The Logger represents an assisting class which is used in almost all parts of the PyNestML
framework. Errors during the parsing and semantical checks as well as all complications
arising in the code generators are reported by means of this component. Often identical
errors can occur in several parts of the toolchain, e.g., an underivable type in the expres-
sion and data-type processing visitors. Whenever these messages have to be adjusted, it
is necessary to locate all occurrences and adjust equally in order to preserve consistency.
The implementation tackles this problem by storing all messages in a single unit, namely
the Messages class as shown in Figure 3.23. Each message is encapsulated in a private field
and can not be directly accessed. Instead, a corresponding getter is used. Consequently,
all messages can be changed while the interface remains unaffected. Moreover, the Mes-
sages class implements an additional feature which makes specific filtering of messages
easier to achieve. In order to avoid direct interactions with message strings, each message
is returned as a tuple consisting of a string and the corresponding message code. The
message code is hereby an element of the MessageCode enumeration type which provides
a wide range of message and error codes. Whenever a getter method of the Message class
is invoked, a tuple of a message and the corresponding code is returned. Each reported
issue can, therefore, be identified by its error code, making filtering of messages by their
type or logging level possible.

The Message class makes reporting of errors easy to achieve and maintain. The actual
printing and storing of reported issues is delegated to the Logger class, where all messages
are stored together with several qualifying characteristics. In order to filter out messages
which are not relevant according to the user, a logging level can be set. Messages whose
logging level is beneath the stored one are not printed to the screen but may be stored
in the optionally generated log file. In order to associate a message with its origin, i.e.,
the neuron model where the corresponding error occurred, a reference to the currently
processed neuron is stored. All messages can therefore also be filtered by their origin.

The corresponding set of operations on the logger represents a complete interface for
the storing, printing and filtering of messages. The logMessage method inserts a new
message into the log and expects the above-mentioned tuple. The getAllMessagesOfLevel
method returns all messages of a specified logging level, while getAllMessagesOfNeuron
returns all issues reported for a specific neuron model. The hasErrors method checks
whether a neuron does or does not contain errors. The final operation of this class is
the printToJSON method. As introduced in the PyNestMLFrontend class, it is possible
to store the overall log in a single file. For this purpose, first, it is necessary to create
a sufficient representation of the log in JSON format. This task is handed over to the
aforementioned method, which inspects the log and returns a corresponding JSON string
representation. In conclusion, all methods of this class represent an ideal interface for a

47

3.5 Summary: Model-processing Frontend

In this section, we presented all assisting classes as contained in the framework:

• FrontendConfiguration: A configuration class used to store handed over parameters.

• PyNestMLFrontend : A class providing a simple interface to PyNestML.

• Logger and Messages: A logger with a set of corresponding messages for precise and
easy to filter logs.

• ASTNodeFactory and ASTUtils: Collections of assisting operations as used to create
and modify ASTs.

• ASTOdeTransformer : A component specialized on manipulating ODE blocks.

• ASTHigherOrderVisitor : A visitor which expects a function, which is then executed
on each node in the AST. Makes inheritance for simple visitors no longer necessary.

All these components make PyNestML easier to maintain and ensure basic qualities of a
software, namely data abstraction, separation of concerns and single responsibility. As we
will see in chapter 5, all these characteristics are highly anticipated and make integration
of extensions an easy to achieve goal.

3.5 Summary: Model-processing Frontend

In this section we demonstrated how the model-processing frontend of NestML was reengi-
neered and migrated to a new platform. We demonstrated how individual components
were implemented and which intentions directed individual concepts. Here, especially the
separation of concerns and single responsible of components had priority: Each subsystem
is implemented with the smallest possible interface. Changes on components are focused
and continuity is given. All introduced components have been developed based on the
Continuous Integration (CI, [FF06]) and Test Driven Development (TDD, [Bec03]) ap-
proaches, thus all subsystems, from the lexer and parser to the ASTSymbolTableVisitor,
are provided with a rich set of tests, automatically executed with each released update.
The result of the processes as involved in the frontend is hereby the representation of a
textual model by means of an AST, where the semantical correctness of the represented
model has been ensured by the SymbolTable and a set of context conditions. This AST
will be used in chapter 4 to create a transformed, target simulator-specific model.

51

Chapter 4

The Generating Backend

The generation of executable code is one of the most important aspects of a DSL-processing
framework and enables the validation of the modeled concepts. The transformation of a
textual model to an executable representation by means of a DSL framework prevents a
manual, error-prone mapping of models to target platforms. In the case of (Py)NestML,
the NEST simulator [GD07] was selected as the first major platform for code generation.
NEST represents a powerful simulation environment for biological neural networks and
is implemented in C++. In this chapter, we will demonstrate how the code-generating
backend was reengineered to generate NEST specific C++ code. For this purpose, sec-
tion 4.1 will first introduce the orchestrating NestCodeGenerator class and subsequently
demonstrate how models are adjusted to be more NEST affine. An overview of the com-
ponents used to generate NEST-specific code concludes this chapter. Figure 4.1 illustrates
the subsystems introduced in this chapter and their relations.

4.1 AST Transformations and Code Generation

In order to demonstrate the code-generating backend, this section will first introduce the
coordinating NestCodeGenerator class and show how the code generation is prepared by
transforming the handed over AST to a more efficient form. Subsequently, we highlight
a set of templates used for the generation of NEST-specific C++ code. Concluding, an
introduction to the special case of expression handling as implemented in the Expres-
sionPrettyPrinter class is given. Figure 4.2 illustrates all components of the reengineered
backend.

The NestCodeGenerator class orchestrates all steps required to generate NEST-specific
artifacts. The overall interface of this class consists of the analyseAndGenerateNeuron
and generateModuleCode methods. By separating the code generation into two different
operations, a clear single responsibility is achieved. While all steps necessary to generate
the C++ implementation of a neuron model are executed in the analyseAndGenerateNeu-
ron method, the task of generating a set of setup artifacts is delegated to the generate-
ModuleCode method. The analyseAndGenerateNeuron function hereby implements the
following steps: First, the assisting solveOdesAndShapes function is executed which indi-
cates whether a transformation of the model to a more efficient structure is possible. If
so, the AST is handed over to the further-on presented EquationsBlockProcessor class,
cf. Figure 4.4, and a restructured AST is computed. Back to the orchestrating anal-
yseAndGenerateNeuron method, an update of the symbol table is invoked by means of
the ASTSymbolTableVisitor, cf. section 3.3. This step is required in order to update the

53

4.1 AST Transformations and Code Generation

ity as required to process both types of returned solutions, e.g., the applyIncomingSpikes
method which replaces all convolve function calls in the equations block by concrete update
instructions, e.g., assignments of values stored in buffers to state-variables. For certain
types of declarations, the ODE-toolbox by Blundell et al. is not able to derive a more
efficient solution [BPEM18]. In these cases, the NEST simulator performs a time consum-
ing numeric integration of the unmodified equations block. Not supported declarations
as well as errors during the equations block processing are hereby indicated by the status
field of the JSON object as returned by the toolbox. In this case, the local working copy
of the AST is not further modified but simply returned to the code-generating subsystem.
As previously stated, the overall processing implements a transformation which is specific
to the NEST simulator. However, other backends may also reuse parts of the presented
classes. Consequently, all concrete transformations as implemented in the ExactSolution-
Transformer, ShapesToOdesTransformer as well as the TransformationBase class have
been summarized in a dedicated module.

The optimized representation of the source model is returned to the orchestrating anal-
yseAndGenerateNeuron method of the NestCodeGenerator class. Here, it is first prepared
for the code generation by retrieving general characteristics and setting up a generation
context which states, e.g., whether a spike buffer is contained in the model. Subsequently,
a template engine and a set of templates are used to generate model-specific C++ code.
The result of this step is an executable representation of a source model as well as a set of
additional artifacts which can now be used to integrate the neuron model into the NEST
simulator.

Jinja2 as well as many other template engines often do not directly interact with the
AST, but follow a more general concept by operating on a generation context. Such a
context consists of a map from identifiers to objects, methods and other properties. For
instance, if the generating routine has to be able to interact with the ASTUtils class, it
is required to create a dictionary mapping a unique identifier to an ASTUtils class refer-
ence. This identifier can then be used in the context of the template to interact with the
corresponding object. Before the code generation is invoked, it is therefore first necessary
to set up a generation context. In the case of PyNestML, this context consists of several
processed objects as well as assisting classes, cf. Figure 4.8. For the sake of modularity, the
creation of an appropriate context is delegated to the setupStandardNamespace function
which instantiates a generation context according to the handed over AST.

Having a set up context, the NestCodeGenerator initiates the actual code generation by
invoking the render operation on the further on introduced templates, with the result being
a set of generated C++ artifacts as illustrated in Figure 4.9. In order to enable an easy to
achieve integration of the generated C++ code into the NEST infrastructure, PyNestML
implements a concept for the generation of setup files. By utilizing predefined extension
points of NEST, new neuron models can be integrated into the simulation environment by
means of a corresponding module file. The task of generating these artifacts is delegated to
the generateModuleCode procedure. Except for a different set of templates, this method
behaves analogously to the above-introduced generateModelCode procedure. After all
model-specific as well as setup artifacts have been generated, the control is returned to
the PyNestML workflow unit.

As demonstrated in section 2.1, often target implementations can be described in a

59

4.2 Summary: The code-generating Backend

instance, the scalar 1000 in a generated expression could originate from the unit volt
or second, or be a simple scalar stated in the source model. Such a handling makes
troubleshooting of generated code complex where the origin of an element is not directly
clear. This problem is solved by the IdempotentReferenceConverter class, a component
which implements a simple identity mapping, i.e., all elements are converted to themselves.
This class is used during the generation of a model’s documentation where all variables,
types, as well as references, are generated in plain NestML syntax.

Together with the above-presented set of assisting classes, the functionality as imple-
mented in the ExpressionPrettyPrinter class enables PyNestML to print complex expres-
sions and other declarations without utilizing templates with cascaded branching and
sub-templates for the generation of atomic parts, e.g., function calls. The result is an easy
to maintain set of components, where complexity is distributed across several subsystems
and no god classes or templates [Rie96] are used.

4.2 Summary: The code-generating Backend

We conclude this chapter by a brief overview of the implemented routines as well as the
performed refactoring steps. Section 4.1 demonstrated how NEST-specific C++ code
can be generated from an optimized AST. Here, we first introduced the coordinating
NestCodeGenerator class and showed how code generation is prepared. To this end, we
outlined how declarations of models can be optimized by restructuring the equations block
to a more efficient form. The computation of the optimizations is hereby delegated to the
ODE-toolbox by Blundell et al. In order to integrate the results as returned by the toolbox,
we implemented the EquationsBlockProcessor and its assisting classes. Together, these two
components yield a more efficient definition of a model. Subsequently, we highlighted a
set of templates used to depict the general structure of generated C++ code. In order to
reduce the complexity in the used templates, PyNestML delegated the task of generating
expressions to the ExpressionPrettyPrinter class. Together, these components implement
a process which achieves a model to text transformation on textual models.

PyNestML has been developed with the intent to provide a base for future development
and extensions. As we demonstrated in section 4.1, the transformation used to construct
NEST-affine and efficient code has been called from within the NEST code generator as
a preprocessing step. Future backends for target platform-specific code generation can,
therefore, implement their individual and self-contained transformations, while all back-
ends receive the same, unmodified input from the frontend. Individual modifications of
the AST can be easily implemented as composable filters in the AST processing pipeline.
Nonetheless, some of the model optimization steps are of target platform-agnostic nature,
e.g., simplification of physical units, and are therefore implemented as a target-unspecific
component in the workflow. Moreover, the key principle of the ExpressionPrettyPrinter,
namely its composability by means of reference converters, represents a reusable compo-
nent which can be used for code generation to arbitrary target platforms. All this leads
to a situation where extensions can be implemented by composing existing components.

65

Chapter 5 Extending PyNestML

The grammar artifacts represent the starting point of each DSL. Consequently, all mod-
ification to the grammar have to be propagated to components which depend on its struc-
ture, namely:

• The lexer and parser used to parse a model to a parse tree.

• The AST classes storing details retrieved from the parse tree.

• The base visitor as well as the ASTBuilderVisitor classes.

• The symbol table building visitor as encapsulated in the ASTSymbolTableVisitor.

In section 3.1 we introduced how a manual implementation process of the lexer and parser
can be avoided by utilizing Antlr. By executing Antlr on the modified grammar artifact, an
implementation of the lexer and parser adapted to the extensions is generated. Together,
these components are used to create the parse tree representation of a model. Proceeding,
it is now necessary to provide a mutable data structure which is able to hold details
retrieved from the parse tree. A new ASTInvariantBlock class is therefore implemented
which holds all details of the new rule. As shown in Figure 5.1, each invariant block
consists of a set of expressions. Consequently, the ASTInvariantBlock class features an
attribute which stores lists of ASTExpression objects. Together with a set of data retrieval
and modification operations, this class represents a data structure which is able to hold
all invariants of a neuron model.

Having a modified meta model, it remains to adapt PyNestML to retrieve invariants
from the parse tree. PyNestML delegates the initialization of an AST to the AST-
BuilderVisitor class, cf. section 3.1. Figure 5.2 illustrates how the AST-building routine
has to be adapted to regard the new invariant block. Here, it is also necessary to extend
the existing visitASTBody rule to include the instantiation of ASTInvariantBlock nodes.
With the modified structure of an AST where a new type of node has been added, it is
also necessary to adapt the ASTVistor class. Implementing a basic traversal routine on
the AST, here it is crucial to include an additional traversal method for the new type of
AST node as well as the corresponding visit routine. Both methods can then be extended
in concrete visitors in order to interact with the invariant block. As illustrated in Fig-
ure 5.3, all extensions are focused in a small set of methods. Besides a modification of the
dispatcher methods, individual monomorphic functions are added.

An initialized AST represents a base for further checks and modifications. Section 3.3
illustrated how semantical checks are implemented by means of a symbol table and a
set of context conditions. With a new type of block, it is therefore necessary to adapt
the symbol table building routine. Extending the ASTVisitor class, all modifications
are focused in the ASTSymbolTableVisitor. Figure 5.4 illustrates how the symbol table
construction routine has to be adapted. Together, these steps enable PyNestML to parse
a model containing the new invarinat block, construct the respective AST and populate
the symbol table with all required details.

5.2 Adding Context Conditions

Whenever a DSL is extended by new concepts, it also becomes necessary to regard addi-
tional semantic rules. In the case of the invariant block, it is essential to ensure that only

68

Chapter 6

The MontiCore Language Workbench

As shown in the previous chapters, the engineering of domain-specific languages is an
error-prone process with many pitfalls and hard to find mistakes. While errors in the
underlying grammars can be mostly detected and reported by the processing tools, many
other components are completely written by hand and require a manual review process
in order to detect unintended behavior or side effects. Here, the generation of software
components has emerged as a possible solution to avoid these problems and accelerate the
overall development process of a DSL. By verifying the component-generating framework
by means of formal approaches [Ble05], it can be ensured that the generated results are
correct. Several tools and complex workbenches have been developed in recent years sup-
porting a wide range of tasks, cf. [SSV+b], from the generation of the underlying structure
of the required components, e.g., classes where all methods have to be implemented by
hand, through to more complex subsystems with fully functional routines such as visi-
tors [HNRW16]. In this work, we will focus on the state-of-the-art language workbench
MontiCore [KRV10, RH17] and demonstrate how a correct extension and integration of
this framework can significantly reduce the overall implementation effort. The goal of this
chapter is, therefore, to illustrate how MontiCore can be extended to support a new plat-
form for the generation of several components as introduced in previous chapters, making
a manual adaptation of the code base unnecessary whenever new extensions to PyNestML
are implemented. For this purpose, we first briefly introduce MontiCore’s workflow in
section 6.1, before demonstrating in section 6.2 how it can be extended to support a new
target platform.

6.1 The Workflow of MontiCore

The MontiCore Language Workbench is a framework developed with the intent to support
and, in part, automate the development of DSLs. MontiCore provides a rich and expressive
grammar declaration language for the definition of the abstract and concrete syntax in the
same artifact. For this purpose, a syntax similar to Antlr was selected and enriched
by several semantical as well as syntactical concepts, e.g., interfaces which enable the
concept of inclusion polymorphism [Rey09] in grammar rules. With more than one decade
in practice, many quality of life features were evaluated and integrated to accelerate a
grammar definition and reduce the poor legibility as often present in defined grammars.
Syntactical adaptations were focused on a clearer declaration of grammars, e.g., where
tokens and grammar rules can be directly distinguished by their respective keywords.
The core of MontiCore is a powerful grammar-processing engine, enabling the automated

73

6.2 Extension of MontiCore

venting an easy to achieve extension to a new target platform for code generation is the
dependency of the generated code to libraries and components which are only available
in Java. In order to support the generation of such components, it would be necessary
to migrate a vast collection of classes and libraries to Python (or any other target plat-
form). Future work may, therefore, focus on an extension of MontiCore which generates
self-contained code without any external dependencies, or an evaluation of existing tech-
nologies in respective languages which can be used as counter pieces to the existing Java
infrastructure.

We conclude this section by a brief discussion on code generation in the concrete use
case of PyNestML. As demonstrated, we were able to generate several DSL-specific com-
ponents as required in the model-processing frontend: A lexer and parser used to parse the
model to a parse tree, a collection of AST classes, and finally a basic as well as an AST-
building visitor. All these components share a commonality, namely the fact that they
have to be rewritten whenever changes to the underlying DSL grammar are implemented.
Especially in the case of visitors which implement a routine which is simple by itself, but
also consists of a massive codebase, code generation can be beneficial. Analogously, AST
classes are always constructed in the same manner, with their basic schema being com-
pletely stated in the source grammar. In both cases a generation of components can be
beneficial whenever the DSL is often modified. However, in the case of the symbol table
and symbols, an automated code generation is only partially applicable. Although Mon-
tiCore is able to generate the basic symbol classes, it is still not directly comprehensible
which components in the grammar correspond to symbols, and which to scopes. Here, it
would be necessary to extend MontiCore with an annotation concept which indicates that
certain symbol classes have to be created. Handwritten solutions are therefore the better
options since the underlying concept of a symbol table and concrete symbols of a handled
DSL do not change often. The same reasoning applies to context conditions [Sch12]. Here,
code generation is almost impossible. Context conditions often embody domain-specific
knowledge whose description is mostly provided in a textual form. Thus, an automated
generation is limited. A possible approach here could be the usage of formal constraint
specification languages such as the Object Constraint Language (OCL, [Gog09]). By an-
notating conditions in the grammar, e.g., stating that at most one block of a certain type
can be declared in a target model, it would be possible to automatically generate a basic
collection of context conditions. However, specific and complex context conditions still
have to be written by hand, making manual writing of code inevitable. Nonetheless, the
above-introduced extension to MontiCore enables us to generate well-defined components
of the model-processing frontend, and therefore to reduce the overall required effort during
the reengineering as well as extension process.

85

Chapter 7

Tutorial

The installation as well as the execution of PyNestML requires a Python installation
in version of at least 2.6, or 3 in an arbitrary subversion. All required dependencies
of PyNestML are collected in requirements.txt and can be installed via Python’s package
management system pip [pyt17a] with the following command on Linux as well as Windows
operating systems:

$ pip install −r requirements.txt

After the installation of all dependencies has been finished, it is necessary to execute the
setup:

$ python setup.py install −−user

If no errors were detected, the processing of models can be started by:

$ python PyNestML.py [ARGUMENTS]

where the arguments are:

87

$ cmake −Dwith−nest=<nest install dir>/bin/nest−config .
$ make
$ make install

For a detailed overview of commands and interaction possibilities with NEST, we refer to
the official documentation [GMP13, NES17].

89

Chapter 8

Conclusion and Future Work

We conclude this report by a brief overview of the achieved results and an outlook to future
work. Chapter 1 gave a short introduction to the scope of this report and which problems
it tackles, namely the reimplementation of an existing neuroscientific framework for the
modeling of spiking point neurons. For a basic understanding of the matter, section 2.1 first
introduced the concept of domain-specific modeling languages and outlined all required
components. Section 2.2 summarized the results of a short survey conducted to find
the most suitable components for reuse in PyNestML. Here, Antlr was selected as the
lexer and parser generator, while the task of handling physical units was delegated to the
AstroPy unit system. This chapter also briefly demonstrated three generator engines and
underlined their similarities.

Chapter 3 subsequently introduced the model-processing frontend of PyNestML and
illustrated all conducted reengineering steps. To this end, section 3.1 showed how a gram-
mar artifact represents the starting point of PyNestML and denotes all concepts of the
implemented language. By using Antlr, the respective lexer and parser components were
generated. Due to the insufficient nature of the instantiated parse tree, a set of AST classes
was introduced. Coupling a data structure with common utility, these classes are used by
the ASTBuilderVisitor to initialize an AST representation of a textual model. The task of
collecting all source comments is delegated to the CommentCollectorVisitor class. Section
3.2 introduced a data structure for storage of context-related details, namely the Symbol
classes. Together with the predefined subsystem, these components enable PyNestML to
store a set of predefined types, variables and functions. Model types are hereby derived
by the ASTExpressionsTypeVisitor and the ASTUnitTypeVisitor classes. Utilizing these
components, section 3.3 introduced a subsystem for semantical checks. The SymbolTable
class is hereby used to store the context of a processed model, while the ASTSymbolTable-
Visitor is responsible for collecting all required details. A set of context conditions finally
ensures that semantically incorrect models are filtered out. This chapter was concluded
in section 3.4 with an overview of assisting classes. The overall interface to PyNestML is
encapsulated in the PyNestMLFront class, while the Logger class implements an easy to
use logging concept. This section also introduced the higher-order visitor, an extension to
the visitor concept which avoids unnecessary sub-classing in many cases.

Based on the results from the previous chapter, chapter 4 demonstrated the NEST
code generator. The coordinating NestCodeGenerator class takes care of all processes
necessary to generate C++ code and delegates individual steps to assisting subsystems.
Here, the SymPySolver class is used to interact with the ODE-toolbox by Blundell et al.
The computed AST-to-AST transformations are subsequently integrated into the AST by
the EquationsBlockProcessor, before a set of templates is used to generate the respective

91

Chapter 8 Conclusion and Future Work

C++ code. This chapter also showed how different syntaxes can be integrated into a single
target artifact by means of the ExpressionPrettyPrinter class. Especially the composable
nature of the pretty printer and the reference converters was demonstrated, making the
implementation of new targets for code generation an easy to achieve task. This chapter
also gave a reasoning why a coupling of code generation and AST-to-AST transformations
makes sense in environments where several target platforms are – or shall be – supported.

In order to demonstrate how the provided implementation of PyNestML can be ex-
tended, chapter 5 introduced three typical use cases. Section 5.1 illustrated how the
model-processing frontend has to be adapted to support new productions in the grammar,
while section 5.2 outlined all required steps to implement new semantical checks. Section
5.3 showed how additional templates can be integrated into code generation. However, an
error-prone implementation of these extensions by hand can usually be avoided by utiliz-
ing appropriate tools. For this purpose, chapter 6 introduced the state-of-the-art language
workbench MontiCore. This chapter showed which components of MontiCore have to be
extended to support Python as a new platform for code generation. Chapter 7 concluded
the report with a short tutorial on how to use PyNestML.

With Python as the new platform, an integration of PyNestML into neuroscientific
ecosystems, e.g., other tools and frameworks, can be easily conducted. Moreover, bridge
technologies were made obsolete, making the setup and usage of PyNestML easy to achieve.
Future work may, therefore, focus on an extension of the existing framework by new func-
tionality. The underlying DSL can be enriched by new concepts and approaches for spec-
ifying entities as often required in neuroscientific simulations, e.g., synapses or topologies
of neurons. By adding support for new target platforms such as SpiNNaker [FGTP14],
Neuron [CH06] or LEMS [CGC+14], a wider user base can be included, while the exchange
and validation of neuron models is no longer hindered by a manual transformation process.

With the continuing rise of computational power, new and more complex simulations
become possible. More sophisticated modeling approaches will, therefore, be required to
provide appropriate scalability while being able to capture all details. Here, (Py)NestML
provides a good foundation for future work. Concluding with a quote by Harriett Jackson
Brown Jr.:

The best preparation for tomorrow is doing your best today.

92

Chapter 9

PyNestML Grammar

grammar PyNESTML{

token SL COMMENT =
(’#’ (˜(’\n’ |’\ r ’))∗) : { self . channel=2;};

token ML COMMENT =
(”/∗” .∗? ”∗/” | ”\”\”\”” .∗? ”\”\”\””) : { self . channel=2;};

token NEWLINE =
(’\ r ’ ’\n’ | ’\r ’ | ’\n’): { self . channel=3; };

token WS =
(’ ’ | ’\t ’) :{ self . channel=1; };

token LINE ESCAPE =
’\\’ ’\r ’? ’\n’:{ self . channel=1; };

token BLOCK OPEN = ’:’;

token BLOCK CLOSE = ”end”;

token BOOLEAN LITERAL =
”true” | ”True” | ”false ” | ”False ”;

token STRING LITERAL =
’”’ (’a ’..’ z ’| ’A ’..’ Z’ | ’ ’ | ’$’)
(’a ’..’ z ’| ’A ’..’ Z’ | ’ ’ | ’0’..’9’ | ’$’)∗ ’”’;

token NAME =
(’a ’..’ z ’|’ A ’..’ Z’ | ’ ’ | ’$’)
(’a ’..’ z ’|’ A ’..’ Z’ | ’ ’ | ’0’..’9’ | ’$’)∗;

token INTEGER = NON ZERO INTEGER | ’0’;

fragment token NON ZERO INTEGER = ’1’..’9’ (’0’..’9’)∗;

token FLOAT = POINT FLOAT | EXPONENT FLOAT;

fragment token POINT FLOAT = (NON ZERO INTEGER |’0’)? FRACTION
| (NON ZERO INTEGER |’0’) ’.’;

93

Chapter 9 PyNestML Grammar

fragment token EXPONENT FLOAT =
(NON ZERO INTEGER | POINT FLOAT) EXPONENT ;

fragment token EXPONENT =
(’e ’|’ E’) (’+’|’−’)? (NON ZERO INTEGER |’0’);

fragment token FRACTION = ’.’ (’0’..’9’)+;

/∗∗∗

∗ NestML−Language
∗∗/

NestmlCompilationUnit = (Neuron | NEWLINE)∗ EOF;

Neuron = ”neuron” NAME Body;

Body = BLOCK OPEN
(NEWLINE | BlockWithVariables | UpdateBlock |
EquationsBlock | InputBlock | OutputBlock | Function)∗
BLOCK CLOSE;

BlockWithVariables =
(isState :”state ”| isParameters:”parameters”|
isInternals :” internals ”| isInits :” initial values ”)?

BLOCK OPEN
(Declaration | NEWLINE)∗

BLOCK CLOSE;

UpdateBlock = ”update” BLOCK OPEN
Block
BLOCK CLOSE;

EquationsBlock = ”equations” BLOCK OPEN
(OdeFunction|OdeEquation|OdeShape|NEWLINE)+
BLOCK CLOSE;

InputBlock = ”input” BLOCK OPEN
(InputLine | NEWLINE)∗
BLOCK CLOSE;

InputLine =
name:NAME
(”[” sizeParameter:NAME ”]”)?
(Datatype)?
”<−” InputType∗
(isCurrent:”current” | isSpike :”spike ”);

InputType = (isInhibitory:”inhibitory” |
isExcitatory :”excitatory ”);

94

OutputBlock = ”output” BLOCK OPEN
(isSpike :”spike” | isCurrent:”current”) ;

Function = ”function” NAME ”
(” (Parameter (”,” Parameter)∗)? ”)” (returnType:Datatype)?

BLOCK OPEN
Block

BLOCK CLOSE;

Parameter = NAME Datatype;

/∗∗∗

∗ Units−Language
∗∗/

Datatype = isInt:”integer”
| isReal :”real ”
| isString :”string”
| isBool :”boolean”
| isVoid :”void”
| unit:UnitType;

UnitType = leftParentheses:”(”
compoundUnit:UnitType rightParentheses:”)”

| base:UnitType powOp:”∗∗” exponent:INTEGER
| left :UnitType (timesOp:”∗” | divOp:”/”) right:UnitType
| unitlessLiteral :INTEGER divOp:”/” right:UnitType
| unit:NAME;

/∗∗∗

∗ Expressions−Language
∗∗/

Expression =
leftParentheses : ”(” term:Expression rightParentheses:”)”

| <rightassoc> left:Expression powOp:”∗∗” right:Expression
| UnaryOperator term:Expression
| left :Expression (timesOp:”∗” | divOp:”/” | moduloOp:”%”)
right :Expression

| left :Expression (plusOp:”+” | minusOp:”−”)
right :Expression

| left :Expression BitOperator right:Expression
| left :Expression ComparisonOperator right:Expression
| logicalNot :”not” term:Expression
| left :Expression LogicalOperator right:Expression
| condition:Expression ”?” ifTrue :Expression ”:”
ifNot:Expression

| SimpleExpression
;

SimpleExpression = FunctionCall

95

Chapter 9 PyNestML Grammar

| BOOLEAN LITERAL // true & false;
| (INTEGER|FLOAT) (Variable)?
| string :STRING LITERAL
| isInf :” inf ”
| Variable;

UnaryOperator = (unaryPlus:”+”|unaryMinus:”−”|unaryTilde:”̃ ”);

BitOperator = (bitAnd:”&”| bitXor:”̂ ” |
bitOr :”|” | bitShiftLeft :”<<” |
bitShiftRight:”>>”);

ComparisonOperator = (lt:”<” | le:”<=” | eq:”==” |
ne:”!=” | ne2:”<>” | ge:”>=” |
gt :”>”);

LogicalOperator = (logicalAnd:”and” | logicalOr :”or”);

Variable = name:NAME (DifferentialOrder)∗;

DifferentialOrder = ”\’”;

FunctionCall = calleeName:NAME
”(” (Expression (”,” Expression)∗)? ”)”;

/∗∗∗

∗ Equations−Language
∗∗/

OdeFunction = (recordable:”recordable”)? ”function”
variableName:NAME Datatype ”=” Expression (”;”)?;

OdeEquation = lhs:Variable ”=” rhs:Expression (”;”)?;

OdeShape = ”shape” lhs:Variable ”=” rhs:Expression (”;”)?;

/∗∗∗

∗ Procedural−Language
∗∗/

Block = (Stmt | NEWLINE)∗;

Stmt = SmallStmt | CompoundStmt;

CompoundStmt = IfStmt
| ForStmt
| WhileStmt;

SmallStmt = Assignment
| FunctionCall
| Declaration

96

| ReturnStmt;

Assignment = lhsVariable:Variable
(directAssignment:”=” |
compoundSum:”+=” |
compoundMinus:”−=” |
compoundProduct:”∗=” |
compoundQuotient:”/=”) Expression;

Declaration =
(isRecordable:”recordable”)? (isFunction :”function”)?
Variable (”,” Variable)∗ Datatype
(”[” sizeParameter:NAME ”]”)?
(”=” rhs:Expression)?
(”[[” invariant :Expression ”]]”)?;

ReturnStmt = ”return” Expression?;

IfStmt = IfClause
ElifClause∗
(ElseClause)?
BLOCK CLOSE;

IfClause = ”if” Expression BLOCK OPEN Block;

ElifClause = ”elif ” Expression BLOCK OPEN Block;

ElseClause = ”else” BLOCK OPEN Block;

ForStmt = ”for” var:NAME ”in” startFrom:Expression ”...”
endAt:Expression ”step” step:SignedNumericLiteral
BLOCK OPEN
Block
BLOCK CLOSE;

WhileStmt = ”while” Expression BLOCK OPEN Block BLOCK CLOSE;

SignedNumericLiteral = (negative:”−”?) (INTEGER|FLOAT);
}

97

Bibliography

[AEM+16] Katrin Amunts, Christoph Ebell, Jeff Muller, Martin Telefont, Alois Knoll,
and Thomas Lippert. The Human Brain Project: Creating a European re-
search infrastructure to decode the human brain. Neuron, 92(3):574–581,
2016.

[AGH00] Ken Arnold, James Gosling, and David Holmes. The Java Programming
Language. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
3rd edition, 2000.

[And03] Alex M Andrew. Spiking neuron models: Single neurons, populations, plas-
ticity. Kybernetes, 32(7/8), 2003.

[ART+13] Astropy Collaboration, T. P. Robitaille, E. J. Tollerud, P. Greenfield,
M. Droettboom, E. Bray, T. Aldcroft, M. Davis, A. Ginsburg, A. M. Price-
Whelan, W. E. Kerzendorf, A. Conley, N. Crighton, K. Barbary, D. Muna,
H. Ferguson, F. Grollier, M. M. Parikh, P. H. Nair, H. M. Unther, C. Deil,
J. Woillez, S. Conseil, R. Kramer, J. E. H. Turner, L. Singer, R. Fox, B. A.
Weaver, V. Zabalza, Z. I. Edwards, K. Azalee Bostroem, D. J. Burke, A. R.
Casey, S. M. Crawford, N. Dencheva, J. Ely, T. Jenness, K. Labrie, P. L. Lim,
F. Pierfederici, A. Pontzen, A. Ptak, B. Refsdal, M. Servillat, and O. Stre-
icher. Astropy: A community Python package for astronomy. 558:A33,
October 2013.

[Bec03] Kent Beck. Test-driven development: by example. Addison-Wesley Profes-
sional, 2003.

[BHS07] Frank Buschmann, Kelvin Henney, and Douglas Schimdt. Pattern-oriented
Software Architecture: on patterns and pattern language, volume 5. John
wiley & sons, 2007.

[Ble05] Blech, Jan Olaf and Glesner, Sabine and Leitner, Johannes. Formal verifi-
cation of java code generation from UML models. Fujaba Days, 2005:49–56,
2005.

[BPEM18] Inga Blundell, Dimitri Plotnikov, Jochen Martin Eppler, and Abigail Mor-
rison. Automatically selecting a suitable integration scheme for systems of
differential equations in neuron models. Frontiers in Neuroscience, 2018.

[BW84] Alan Bundy and Lincoln Wallen. Context-Free Grammar, pages 22–23.
Springer Berlin Heidelberg, Berlin, Heidelberg, 1984.

99

Bibliography

[Car85] Cardelli, Luca and Wegner, Peter. On understanding types, data abstraction,
and polymorphism. ACM Computing Surveys (CSUR), 17(4):471–523, 1985.

[Car07] Ted Carnevale. NEURON simulation environment. Scholarpedia, 2(6):1378,
2007.

[CE97] Anthony Clark and Andy Evans. Foundations of the Unified Modeling
Language. In Proceedigs of the 2nd Northern Formal Methods Workshop.
Springer, 1997.

[CEC00] Krzysztof Czarnecki, Ulrich W Eisenecker, and Krysztof Czarnecki. Gener-
ative programming: methods, tools, and applications, volume 16. Addison
Wesley Reading, 2000.

[CGC+14] Robert C. Cannon, Padraig Gleeson, Sharon Crook, Gautham Ganapathy,
Boris Marin, Eugenio Piasini, and R. Angus Silver. Lems: a language for
expressing complex biological models in concise and hierarchical form and its
use in underpinning neuroml 2. Frontiers in Neuroinformatics, 8:79, 2014.

[CH06] Nicholas T Carnevale and Michael L Hines. The NEURON book. Cambridge
University Press, 2006.

[che17] Cheetah Template Engine, Documentation. http://pythonhosted.org/

Cheetah/users_guide/, 2017.

[DA01] Peter Dayan and Laurence F Abbott. Theoretical neuroscience, volume 806.
Cambridge, MA: MIT Press, 2001.

[DBE+08] Andrew P. Davison, Daniel Brüderle, Jochen M. Eppler, Jens Kremkow,
Eilif Müller, Dejan Pecevski, Laurent U. Perrinet, and Pierre Yger. PyNN:
A Common Interface for Neuronal Network Simulators. Frontiers in Neu-
roinformatics, 2:3637 – 3642, 2008.

[doc17] Docker Homepage and Documentation. https://www.docker.com/, 2017.

[Dun11] Jeff Duntemann. Assembly language step-by-step: Programming with Linux.
John Wiley & Sons, 2011.

[EHM+09] Jochen Eppler, Moritz Helias, Eilif Muller, Markus Diesmann, and Marc-
Oliver Gewaltig. PyNEST: a convenient interface to the NEST simulator.
Frontiers in Neuroinformatics, 2:12, 2009.

[FF06] Martin Fowler and Matthew Foemmel. Continuous integration. http: //

www. thoughtworks. com/ ContinuousIntegration. pdf , 122, 2006.

[FGTP14] S. B. Furber, F. Galluppi, S. Temple, and L. A. Plana. The SpiNNaker
Project. Proceedings of the IEEE, 102(5):652–665, May 2014.

[Fow10] Martin Fowler. Domain-specific languages. Pearson Education, 2010.

100

Bibliography

[fre17] Freemarker Homepage and Documentation. https://freemarker.apache.

org/, 2017.

[Gam95] Erich Gamma. Design patterns: Elements of reusable object-oriented soft-
ware. Pearson Education India, 1995.

[GBR04] Benjamin Geer, Mike Bayer, and Jonathan Revusky. The FreeMarker tem-
plate engine, 2004.

[GD07] Marc-Oliver Gewaltig and Markus Diesmann. NEST (NEural Simulation
Tool). Scholarpedia, 2(4):1430, 2007.

[GMP13] Marc-Oliver Gewaltig, Abigail Morrison, and Hans Ekkehard Plesser. NEST
by Example: An Introduction to the Neural Simulation Tool NEST Version
2.6. 0. 2013.

[gnu17] Gnu Make Documentation. https://www.gnu.org/software/make/

manual/make.pdf, 2017.

[Gog09] Martin Gogolla. Object Constraint Language. Springer US, 2009.

[Gou09] Brian Gough. GNU scientific library reference manual. Network Theory Ltd.,
2009.

[Hel96] Balzert Helmut. Lehrbuch der Software-Technik, 1996.

[Hem93] Thomas Hemmann. Reuse approaches in software engineering and knowledge
engineering: a comparison. In Position Paper Collection of the 2nd Int.
Workshop on Software Reusability, number 93-69, 1993.

[HH09] Suzana Herculano-Houzel. The human brain in numbers: a linearly scaled-up
primate brain. Frontiers in Human Neuroscience, 3:31, 2009.

[HLP+15] Arne Haber, Markus Look, Antonio Navarro Perez, Pedram Mir Seyed
Nazari, Bernhard Rumpe, Steven Völkel, and Andreas Wortmann. Inte-
gration of heterogeneous modeling languages via extensible and composable
language components. In Model-Driven Engineering and Software Develop-
ment (MODELSWARD), 2015 3rd International Conference on, pages 19–31.
IEEE, 2015.

[HMSNR15] Katrin Hölldobler, Pedram Mir Seyed Nazari, and Bernhard Rumpe. Adapt-
able symbol table management by meta modeling and generation of symbol
table infrastructures. In Proceedings of the Workshop on Domain-Specific
Modeling, pages 23–30. ACM, 2015.

[HNRW16] Robert Heim, Pedram Mir Seyed Nazari, Bernhard Rumpe, and Andreas
Wortmann. Compositional language engineering using generated, extensible,
static type-safe visitors. In European Conference on Modelling Foundations
and Applications, pages 67–82. Springer, 2016.

101

Bibliography

[Izh03] Eugene M Izhikevich. Simple model of spiking neurons. IEEE Transactions
on neural networks, 14(6):1569–1572, 2003.

[JBW+10] Josh Juneau, Jim Baker, Frank Wierzbicki, Leo Soto, and Victor Ng. The
Definitive Guide to Jython: Python for the Java Platform. Apress, Berkely,
CA, USA, 1st edition, 2010.

[JČMG12] David Joyner, Ondřej Čert́ık, Aaron Meurer, and Brian E Granger. Open
source computer algebra systems: SymPy. ACM Communications in Com-
puter Algebra, 45(3/4):225–234, 2012.

[jin17] Jinja Template Engine, Documentation. http://jinja.pocoo.org/docs/

2.10/, 2017.

[Kra10] Holger Krahn. MontiCore: Agile Entwicklung von domänenspezifischen
Sprachen im Software-Engineering. Shaker, 2010.

[KRV10] Holger Krahn, Bernhard Rumpe, and Steven Voelkel. MontiCore: A Frame-
work for Compositional Development of Domain Specific Languages. Int. J.
Softw. Tools Technol. Transf., 12(5):353–372, September 2010.

[KSJ+00] Eric R Kandel, James H Schwartz, Thomas M Jessell, Steven A Siegelbaum,
A James Hudspeth, et al. Principles of neural science, volume 4. McGraw-hill
New York, 2000.

[LMB92] John R Levine, Tony Mason, and Doug Brown. Lex & yacc. O’Reilly Media,
Inc., 1992.

[Lou] Kenneth C Louden. Compiler construction: Principles and practice. 1997.
PWS. Boston.

[M+03] Jürgen Karl Müller et al. The Building Block Method: Component-Based
Architectural Design for Large Software-Intensive Product Families. Uni-
versiteit van Amsterdam, Faculteit der Natuurwetenschappen, Wiskunde en
Informatica, 2003.

[MAT17] MATLAB. version 9.3 (R2017b). The MathWorks Inc., Natick, Mas-
sachusetts, 2017.

[MBD+15] Eilif Muller, James A Bednar, Markus Diesmann, Marc-Oliver Gewaltig,
Michael Hines, and Andrew P Davison. Python in neuroscience. Frontiers
in neuroinformatics, 9, 2015.

[McG07] Paul McGuire. Getting started with pyparsing. O’Reilly Media, Inc., 2007.

[Mey02] Bertrand Meyer. Design by contract. Prentice Hall, 2002.

[MHDH13] Sayed Mehdi Hejazi Dehaghani and Nafiseh Hajrahimi. Which factors affect
software projects maintenance cost more? 21:63–6, 03 2013.

[moz17] Mozilla Corporation Website. https://www.mozilla.org/de/, 2017.

102

Bibliography

[MR] Daniel D. McCracken and Edwin D. Reilly. Backus-Naur Form (BNF). In
Encyclopedia of Computer Science, pages 129–131. JohnWiley and Sons Ltd.,
Chichester, UK.

[NES17] Nest Simulator Website. http://www.nest-simulator.org/, 2017.

[Nol02] John Nolte. The human brain: an introduction to its functional anatomy.
2002.

[NPRI09] Nurzhan Nurseitov, Michael Paulson, Randall Reynolds, and Clemente Izuri-
eta. Comparison of JSON and XML data interchange formats: a case study.
Caine, 2009:157–162, 2009.

[Par09] Terence Parr. Language Implementation Patterns: Create Your Own
Domain-Specific and General Programming Languages. Pragmatic Bookshelf,
1st edition, 2009.

[Plo18] Plotnikov, Dimitri. NESTML-die domänenspezifische Sprache für den NEST-
Simulator neuronaler Netzwerke im Human Brain Project. PhD thesis,
RWTH Aachen University, Germany, 2018.

[PLW+00] Terence Parr, John Lilly, Peter Wells, Rick Klaren, M Illouz, J Mitchell, Scott
Stanchfield, J Coker, M Zukowski, and C Flack. ANTLR reference manual.
MageLang Institute, document version, 2(0), 2000.

[PRB+16] Dimitri Plotnikov, Bernhard Rumpe, Inga Blundell, Tammo Ippen,
Jochen Martin Eppler, and Abigail Morrison. NESTML: a modeling lan-
guage for spiking neurons. CoRR, abs/1606.02882, 2016.

[pyt17a] Python pip documentation. https://pip.pypa.io/en/stable/, 2017.

[pyt17b] Python Ply documentation. http://www.dabeaz.com/ply/, 2017.

[RBF+05] Daniel A Reed, Ruzena Bajcsy, Manuel A Fernandez, Jose-Marie Griffiths,
Randall D Mott, Jack Dongarra, Chris R Johnson, Alan S Inouye, William
Miner, Martha K Matzke, et al. Computational science: Ensuring america’s
competitiveness. Technical report, PRESIDENT’S INFORMATION TECH-
NOLOGY ADVISORY COMMITTEE ARLINGTON VA, 2005.

[Rey09] John C Reynolds. Theories of programming languages. Cambridge University
Press, 2009.

[RH17] Bernhard Rumpe and Katrin Hoelldobler. MontiCore 5 Language Workbench
Edition 2017. http://www.se-rwth.de/, 2017.

[Rie96] Arthur J Riel. Object-oriented design heuristics. Addison-Wesley Publishing
Company, 1996.

[Ron08] Armin Ronacher. Jinja2 Documentation, 2008.

103

Bibliography

[Rum11] Bernhard Rumpe. Modellierung mit UML, volume 2nd Edition. Springer,
2011.

[Rum17] Bernhard Rumpe. Agile Modeling with UML: Code Generation, Testing,
Refactoring. Springer, 2017.

[Sch98] Herbert Schildt. C++: the complete reference. Osborne/McGraw-Hill, 1998.

[Sch12] Martin Schindler. Eine Werkzeuginfrastruktur zur agilen Entwicklung mit
der UML/P, volume 11. RWTH Aachen University, Germany, 2012.

[Sch17] Martin Schindler. Eine Werkzeuginfrastruktur zur agilen Entwicklung mit
der UML/P. PhD thesis, RWTH Aachen University, 2017.

[sou17] Sourceforge Website. https://sourceforge.net/, 2017.

[SSV+a] Klemens Schindler Schindler, Riccardo Solmi12, Vlad Vergu10, Eelco
Visser10, Kevin van der Vlist13, Guido Wachsmuth10, and Jimi van der
Woning13. The state of the art in language workbenches.

[SSV+b] Klemens Schindlerf Schindlerf, Riccardo Solmim, Vlad Vergui, Eelco Vis-
seri, Kevin van der Vlistk, Guido Wachsmuthi, and Jimi van der Woningl.
Evaluating and Comparing Language Workbenches.

[ten17] Tenjin Template Engine, Documentation. http://www.kuwata-lab.com/

tenjin/pytenjin-users-guide.html, 2017.

[van95] Guido van Rossum. Python tutorial, April 1995.

[VDKV00] Arie Van Deursen, Paul Klint, and Joost Visser. Domain-specific languages:
An annotated bibliography. ACM Sigplan Notices, 35(6):26–36, 2000.

[VHJG95] John Vlissides, Richard Helm, Ralph Johnson, and Erich Gamma. Design
patterns: Elements of reusable object-oriented software. Reading: Addison-
Wesley, 49(120):11, 1995.

[Wes02] J. Christopher Westland. The cost of errors in software development: evi-
dence from industry. Journal of Systems and Software, 62(1):1–9, 2002.

104

List of Figures

1.1 Izhikevich Integrate-and-Fire Neuron Model 2

2.1 An Overview of the processing Workflow . 8
2.2 The Architecture of a DSL . 9
2.3 A model in the Calculator Modeling Language (CML). 10
2.4 An excerpt from the CML Grammar . 11
2.5 From a Model to the Parse Tree . 12
2.6 The Construction of an AST . 13
2.7 Construction of a Symbol Table . 14
2.8 The code-generating Backend . 15
2.9 A Comparison of Models . 16
2.10 Grammar rule in Ply . 18
2.11 Grammar rules in PyParsing . 18
2.12 Template Engines in Comparison . 20

3.1 Overview: Model-processing Frontend . 22
3.2 Overview: Lexer, Parser and AST Classes 23
3.3 Simplified Grammar . 23
3.4 The model-parsing Processes . 24
3.5 Overview: AST Classes . 25
3.6 From Grammar to AST Classes . 26
3.7 ASTSimpleExpression method in Python 27
3.8 The CommentColletorVisitor . 27
3.9 Comment-Processing Routine . 28
3.10 The Symbol Subsystem . 29
3.11 The Predefined Subsystem . 31
3.12 Instantion of SI Units with AstroPy . 32
3.13 The Type-Deriving Visitor Subsystem . 34
3.14 Derivation of types in ASTDataType nodes 35
3.15 Derivation of types in ASTExpression nodes 36
3.16 Overview of Semantical Checks . 37
3.17 Symbol Resolution Process . 39
3.18 AST Context-Collecting and Update . 39
3.19 CoCosManager and Context Conditions . 41
3.20 Simple and complex Context Conditions . 44
3.21 Ovierview: Assisting Components . 46
3.22 Steps of Model-Processing in PyNestML . 46
3.23 The Logger and Messages Components . 48
3.24 AST-manipulating Components . 49

105

List of Figures

3.25 Visitor Pattern in Practice . 50
3.26 The Higher-Order Visitor . 50

4.1 Overview: Code-Generating Backend . 54
4.2 NEST Code Generation Backend . 54
4.3 Processing of a model in the NEST backend 55
4.4 Model Transformation Subsystem . 56
4.5 From NestML to JSON . 56
4.6 ODE-toolbox Interaction . 57
4.7 State Chart of Model Transformations . 58
4.8 NESTCodeGenerator and assisting components 60
4.9 Generated artifacts . 60
4.10 Templates and the generated Code . 61
4.11 Context sensitive target syntax . 61
4.12 ASTExpression as a string . 62
4.13 Adaption of Syntax by convertToCPPName 63
4.14 Mapping of NestML types to NEST . 63
4.15 Common neuroscientific physical units . 64
4.16 The conversion of physical units to NEST 64

5.1 Extending PyNestML: New Grammar Rules 67
5.2 Extending PyNestML: Modifying the AST Builder 69
5.3 Extending PyNestML: Modifying the AST Visitor 69
5.4 Extending PyNestML: Adapting the ASTSymbolTableVisitor 70
5.5 Extending PyNestML: Adding Context Conditions 71
5.6 Extending PyNestML: Extending the CoCosManager 71
5.7 Extending PyNestML: Inclusion of new Templates 72

6.1 MontiCore’s Workflow . 74
6.2 MontiCore Grammar . 75
6.3 MontiCore: From Grammar to Class Diagram 76
6.4 MontiCore: From Class Diagram to Code 77
6.5 MontiCore: Demonstrated Extension . 78
6.6 MontiCore: Template and Hook . 79
6.7 MontiCore: Template and Result . 80
6.8 MontiCore: Generated Dependencies . 81
6.9 MontiCore: From MontiCore to Antlr . 82
6.10 MontiCore: From Class Diagram to ASTBuilder 83
6.11 MontiCore: The Parser Class . 83
6.12 MontiCore: Generated Java and Python Visitor 84

7.1 Output of PyNestML . 88

106

