nest :: il

Reengineering NestML with Python
and MontiCore

Inga Blundell?, Jochen Martin Eppler?, Abigail Morrison?34,

Konstantin Perun!?, Dimitri Plotnikov®!, Bernhard Rumpe!, and
Guido Trensch?

'RWTH Aachen University, Software Engineering, Jiilich Aachen Research Alliance (JARA),
Aachen, Germany

2Forschungszentrum Jiilich, Simulation Lab Neuroscience, Institute for Advanced Simulation,
JARA, Jiilich, Germany

3Forschungszentrum Jiilich, Institute of Neuroscience and Medicine (INM-6), Institute for
Advanced Simulation (IAS-6), JARA BRAIN Institute I, Jiilich, Germany

4Ruhr-University Bochum, Faculty of Psychology, Institute of Cognitive Neuroscience, Bochum,
Germany

Abstract

The NEST Modeling Language (NestML, [PRB116]) is a domain-specific modeling lan-
guage developed with the aim to provide an easy to use framework for the specification
of executable NEST simulator models [GDO07]. Since its introduction in the year 2012,
many concepts and requirements were integrated into the existing toolchain, while the
programming language Java as the underlying platform remained almost untouched, mak-
ing maintenance and extension of the framework by neuroscientists a disproportionately
complex and costly process. This circumstance contradicts the basic principle of NestML,
namely to provide a modular and easy to extend modeling language for the neuroscientific
domain.

More than 90% of the overall costs arising during the development and usage of soft-
ware systems originate in the maintenance phase [MHDH13], a circumstance which makes
foresighted planning and design of software systems a crucial part of a software’s life-
cycle. While the effects of errors and bad design in programming in the small can be
mostly mitigated by using appropriate concepts, e.g., data abstraction and modulariza-
tion, wrongheaded decisions concerning the overall architecture or platform make the
software’s operation costly in the long term and affect the development over its whole life
cycle [Wes02]. Here, reengineering and especially the changing of the environment or
platform of the existing systems is the approach of choice given the fact, that systems often
use no longer supported components, contain errors in the overall foundation or simply do
not correspond to the existing requirements.

This report deals with the reengineering of the NestML tools collection and its migration
to Python [van95] as a new target platform. Given Python’s popularity in the neuroscien-
tific domain, a migration benefits the usability as well as integration into existing systems,
facilitates extensions by neuroscientists and makes usage of bridge technologies unneces-
sary. In order to accelerate the development and ensure modularity as well as maintain-
ability of the reengineered software, the MontiCore Language Workbench [KRV10)]
will be used and extended by Python as a new target platform for code generation.

The material in this technical report is based largely on the Master Thesis by Konstantin
Perun, which was submitted to the Chair of Software Engineering at RWTH Aachen
University on April 9, 2018.

ii

Contents

1 Introduction 1
1.1 Research Question 4
1.2 Structure of the Reporto 5
2 Fundamentals 7
2.1 Domain-Specific Modeling Languages 7
2.2 Methodology and Reuse of Components 16
3 The model-processing Frontend 21
3.1 Lexer, Parser and AST classes 21
3.2 Symbol and Typing System 29
3.3 Semantical Checks 37
3.4 Assisting Classes e 45
3.5 Summary: Model-processing Frontend 51
4 The Generating Backend 53
4.1 AST Transformations and Code Generation 53
4.2 Summary: The code-generating Backend 65
5 Extending PyNestML 67
5.1 Modifying the Grammar 67
5.2 Adding Context Conditions, 68
5.3 Modifying the code-generating Backend 70
6 The MontiCore Language Workbench 73
6.1 The Workflow of MontiCore 73
6.2 Extension of MontiCore 76
7 Tutorial 87
8 Conclusion and Future Work 91
9 PyNestML Grammar 93
List of Tables 105

List of Figures 105

iii

Chapter 1
Introduction

The brain is by far the most complex part of the human body [Nol02]. With approx-
imatively 10° - 10'2 neurons [HH09] it defines humans’ behavior and consciousness as
well as the perception of the environment. Although its capability to repair damages
and anomalies to a certain degree by itself [KSJT00], external involvement is still often re-
quired to prevent natural processes such as Alzheimer or repair damaged tissue. Given the
complexity and especially the size of the overall structure, a fundamental and in-detail un-
derstanding of processes and structures is essential to conduct a correct treatment. While
first approaches to gain the required insights were focused on the extraction of samples,
making experiments on living test subjects necessary, new approaches as emerged in the
last decades since the introduction of computer systems made this kind of experiments
partially obsolete. With computational science as the third pillar of science (besides the-
oretical and experimental science, [RBFT05]), the behavior and structure of organs and
complex systems can be simulated without the need for extraction of tissue or other in-
volvements of living test subjects. Especially the discipline of computational neuroscience
was able to gain many insights by simulating the brain of living organisms [DAO01].

The overall complexity of the brain, as well as the sheer number of neurons with their in-
terconnections via synapses make efficient simulations and usage of resources necessary to
gain insights into such a complex system. Over the years many simulators and simulation
environments were developed, from stand-alone solutions with an easy to use interface such
as Neuron [Car07], through to programming language libraries with a more clear focus on
performance and extensibility. The Neural Simulation Tool (NEST, [GMP13]) represents
such a library implemented in C+4 and is currently under development as a part of the
EU’s Human Brain Project [AEM™16]. However, given its underlying platform, a funda-
mental understanding of programming languages is required to create new simulations and
models or extend the existing behavior with new details. Concrete neuron models have
therefore to be provided as implementations in C++. Here, Domain-Specific Modeling
Languages (DSLs, [VDKV00]) have been established as a possible approach to abstract
from programming language-specific concepts and focus solely on domain-relevant details.
By hiding complex routines on the model in an easy to use framework, DSLs enable the
user to use syntax and concepts common to the corresponding domain in order to define
arbitrary specifications. The task of deriving equivalent models in the target program-
ming language or environment is delegated to a set of tools, an approach which prevents
error-prone and costly transformations by hand.

The Nest Modeling Language (NestML, [Plo18, PRBT16]) was developed with the aim
to support the creation of models for the NEST simulator and therefore to facilitate
the interaction of neuroscientists with the simulation environment. Given its clear intent,

CHAPTER 1 INTRODUCTION

1 neuron izhikevich_neuron: . 24 input: NestML
2 usage of TYP"?GI 25 spikes mV <- spike
3 initial_values: neUFQSC'enT'f'C 26 currents <- current
4 physical units 27 end
5 VmV=-65mV 28
6 U_mreal=0 29 output: spike \m‘f:ezion
7 end 30
8 (initial values for differential equations 31 update:
equations: 32 integrate_odes()
10 V_m'=(0.04*V_m*V_m/mV+50*V_m+ 33
11 (140-U_m) * mV + ((currents + I_e) * GOhm)} / ms 34
12 U_m'=a*(b*V_m-U_m * mV)/(mV*ms) 35 V_m +=spikes
13 end 36
14 37 V_m=(V_m<V_min)?V_min:V_m d ic behavi
15 parameters: 38 =-cynamic behavior
16 areal=0.02 differential equations 39 of the neuron
17 b real =0.2 describing the fime 40 ifV_m >= 30mV:
18 cmV =-65mV dependent development a1 V m=c
19 dreal = 8.0 4 U m+=d
20 |_epA=0pA 43 emit_spike()
21 V_min mV = -inf * mV 44 end
22 end 45 end _
23 \ modifiable parameters 46 end

of the neuron

Figure 1.1: The Izhikevich Integrate-and-Fire Neuron model in NestML syntax: The model
consists of two major components. The first part describes the static properties
of the neuron, including all initial values and parameters such as thresholds
and boundaries. The in- and out-ports of the neuron are defined in the input
and output block. To describe the neuron’s development over time, a set of
differential equations is provided. Each equation states the development of a
variable with respect to time and other parameters. The dynamic behavior of
the overall neuron is stated as a set of imperative update instructions executed
in each observable time step.

NestML establishes a syntax similar to the programming language Python [van95] as often
applied in the computational neuroscience [MBD™15], making the reading and writing of
models easier while requiring a shorter training period to fully understand all details.
In its current state of development, NestML provides all concepts as required for the
modeling of Spiking Point Neurons [And03]. Modeling of such components is especially
interesting given their analogous behavior to real neurons and the inclusion of time as
a leading factor. Figure 1.1 demonstrates a model of the Izhikevich Iniegrate-and-Fire
neuron [Izh03] declared in NestML syntax.

Manual creation of software tends to be error-prone and requires an in-depth review
process to ensure correctness and efficiency [Wes02]. Moreover, whenever a modification
to the DSL and therefore the underlying language is implemented, all components which
depend on those specifications have to be rewritten. In order to avoid these problems the
concept of Generative Software Engineering (GSE, [Rum17, CEC00]) can be employed.
This principle represents a more refined approach to an engineering process and requires
an abstraction of the existing system to a model describing the very same. Such a system
model [Ruml7] represents a given system in part or in total as a blueprint which can be
easily adjusted to new requirements. A set of corresponding tools can then be used to
generate a platform-specific code and documentation, making the model the central point
of maintenance. Domain-specific modeling languages such as NestML utilize a grammar

of the represented language as a blueprint for the generation of code. Adjustments to the
represented language are therefore directly integrated into the formal specification of the
modeling language, while a set of tools is used to automatically derive the corresponding
code base. However, while individual tools generate code which is applicable by itself,
often the problem of incompatible interfaces of used components arises. Generated com-
ponents of a DSL have to be adjusted by hand in order to be integrated into an existing
system - a proceeding which contradicts the basic idea of generative software engineering.
To solve this problem the concept of a Language Workbench [SSVTa] is employed. Instead
of generating components such as lexers and parsers by individual tools, a language work-
bench represents a framework which combines all required tools and processes in a single
entity. Moreover, the interfaces of all generated components are automatically adjusted
to support integration and interaction, avoiding a modification by hand and enabling an
out-of-the-box usage. A language workbench can therefore be used to ease the develop-
ment of a language even further, by integrating all required tools in a single system. In
order to apply all these principles, the state-of-the-art framework MontiCore [KRV10] was
used for the engineering of the initial NestML framework.

Despite the high level of applicability of NestML and the quality of the overall software
system, there exists a major drawback in the available implementation: Currently, Monti-
Core supports only the programming language Java [AGHO00] as a target for the generation
of all required DSL components, making Java the underlying platform of NestML and its
supporting toolchain. However, Java is not prevalent in the computational neuroscience
[MBDT15], a circumstance which results in many disadvantages during its usage. On the
one hand, it prevents neuroscientists from interacting with the existing implementation of
NestML in a white-box manner, making individual modifications and extensions a task for
stakeholders outside of the domain. On the other hand, it also complicates the integration
of the framework into existing ecosystems. Additional bridge technologies such as Jython
[JBWT10] have to be used to enable interactions with existing tools, a solution which is
only applicable or desired in a limited set of cases. All this leads to a situation where
NestML has to depend on additional tools to enable an easy installation and usage. In
order to deliver all required dependencies, subsystems, and platforms in a single image the
virtualization tool Docker [docl7] was employed. In addition to enabling the execution
on an arbitrary system, it also results in disproportionately many tools and technologies
required just in order to provide a compact and easy installation. However, the usage of
virtualization tools solves only the problem of required dependencies and platforms. The
underlying problem of complex or impossible integration with PyNN [DBE*08], PyNEST
[EHM™*09], SymPy [JCMG12] and other tools written in common neuroscientific languages
is still prevalent.

Here, the reengineering of an existing system and a migration to a new platform has
been established as a possible solution to overcome the above-mentioned problems. While
resulting in additional initial effort in order to migrate the existing code base to a new
platform, a reengineering of the system represents an investment which pays off in the long
run. Without the need for bridge technologies and additional tools, the software becomes
easier to maintain, while adjustments and extensions can be directly integrated without
depending on platform external components. Moreover, by selecting a platform according
to the target audience of the software, here it is possible to involve domain experts into

CHAPTER 1 INTRODUCTION

the future development process.

In the case of NestML, the programming language Python [van95] was selected as a
new platform for the existing software systems. Although the computational neuroscience
domain and especially its software frameworks are built upon several platforms, amongst
others the computing environment MATLAB [MAT17] and the general purpose program-
ming language C++, a brief survey revealed that Python is able to provide a good trade-off
between simplicity and expressiveness as required to migrate the existing toolchain. While
MATLAB does not provide several of the required components, including tools for a pro-
cessing of textual models, C++ represents a rich and powerful programming language
which requires a certain level of expertise for maintenance and extension of the code base.
Here, Python includes all required components and tools while persevering an easy to read
syntax and structuring of the software, concepts which benefit an easy to maintain frame-
work. Moreover, several of the components as integrated into NestML are only available in
Python, including the symbolic mathematics library SymPy, making Python the language
of choice for NestML.

A first, naive approach is the migration of the existing code base by means of completely
handwritten code. However, MontiCore enables the generation of all required components,
from the model-processing frontend consisting amongst other of a lezer and parser [Lou],
through to subsystems which ensure partial semantical correctness of provided models by
means of symbols tables and context conditions [HMSNRI15]. Therefore, to avoid error-
prone manual writing of code and ensure an accelerated reengineering process of NestML
by means of existing technologies, MontiCore has to be extended and provided with all
required modifications to support Python as a new platform for a component generation.

While a sole platform migration of NestML represents a valid approach by modifying
the internal structures without altering the external behavior, here it can also be beneficial
to re-evaluate the architecture and recollect all requirements to the existing system. Many
components, as integrated into the initial implementation, may no longer be required.
Other components can be replaced by more efficient or easy to maintain solutions. In
conclusion, the process of a technology migration can be interleaved with a refactoring of
the existing concepts. In the case of NestML, a reengineering process also requires the
reevaluation of existing supporting tools and their applicability in the given situation.

1.1 Research Question

The overall research question of this work is:

How can MontiCore be adapted to support a new target platform for
component generation exemplified on the use case of NestML?¢

The generative approach can only be used up to a certain point, at which problem-specific
concepts can no longer be completely specified by a model. The goal is, therefore, to
determine at which point a manual implementation has to be used instead of adjusting
and parameterizing existing tools. Here, especially the question of the trade-off between
parametrization effort and overall reduction of manual work by generating the correspond-
ing elements is important. This work will therefore demonstrate which Python-specific
DSL components can be generated by MontiCore, and which parts of the software have

1.2 STRUCTURE OF THE REPORT

to be written by hand. This trade-off becomes even more significant if we consider a pos-
sible future life cycle of the software and the intention behind its development. Software
which is developed in a joint effort with domain experts or a community is expected to
be changed often and adjusted to new requirements. Here, an automated generation of
components can be beneficial, making all modifications focused on the design level.

The main contributions of this report are:

e How can a reengineering process of a DSL be conducted, exemplified on the concrete
use case of the neuroscientific modeling language NestML.

e How the MontiCore Language Workbench can be extended to support a new target
platform for component generation.

e Which components of an existing software should be re-generated by the adapted
tools and which elements should be rewritten by hand.

1.2 Structure of the Report

The remainder of this report is structured as follows:

Chapter 1 introduces the overall context of the work, the difficulties and the in-
tended solution.

Chapter 2 provides a concise introduction to the concept of Domain-Specific Mod-
eling Languages (DSL) and a set of components reusable during their construction.

Chapter 3 shows how the model-processing frontend of NestML has been refactored
and migrated to Python as a new platform.

Chapter 4 focuses on the NEST code generator and demonstrates how this com-
ponent was reengineered.

Chapter 5 illustrates, based on a hypothetical use case, how the reengineered frame-
work can be adjusted to new requirements.

Chapter 6 shows how the MontiCore Language Workbench can be extended to
support a new target platform for code generation, thus accelerating the integration
of new requirements into NestML.

Chapter 7 provides an introduction to the usage of the reimplemented framework.

Chapter 8 concludes the report with a summary and an outlook to future work.
The core aspects of the report are once more discussed.

Chapter 2
Fundamentals

The concepts of refactoring and reengineering require an in-depth understanding of a
software’s functionality. Here, the key principle is to preserve the outer behavior, while
the inner structure of the system is modified to adhere to higher quality standards or
other goals. In the case of a domain-specific modeling language, the overall architecture of
the processing tools was silently standardized to a component-based and non-monolithic
shape. This architecture, as well as the general approach to how a complex DSL-processing
framework can be decomposed into a set of individual components and subsystems, will
therefore be presented in section 2.1. Subsequently, section 2.2 will introduce a set of basic
reengineering concepts and evaluate which supporting components can be used in the use
case of NestML.

2.1 Domain-Specific Modeling Languages

A Domain-Specific Modeling Language (DSL, [Fowl0]) is a specification language which
provides appropriate concepts and notations for the modeling of problems in a specialized
domain [VDKV00]. In contrast to General-Purpose Languages (GPL, e.g., UML [Ruml1,
CE97]), which can be used in a wide range of application fields, but do not provide
specific notations and concepts as required for the modeling of very specific problems,
DSLs are designed and designated for a specialized task where an in-detail specification of
the problem and all its domain-specific concepts is required out of the box. Physical units
are a common example of a concept which has to be supported by a modeling language in
the field of neuroscience. Although possible, an extension of a general-purpose modeling
language by such a specific concept would contradict the overall idea of a GPL, namely to
provide an abstract and domain-unspecific concept for the modeling of problems.
Specifications of problems in a given DSL are often not directly executable but rather
of a declarative nature. Consequently, such declarations represent the initial input to a
set of tools which process the given model and generate a refined, executable representa-
tion. This DSL-processing workflow consists of several steps as illustrated in Figure 2.1.
Here, one of the key advantages is the use of general-purpose programming languages as
a common interface for the generation of code. Generating directives which can be di-
rectly executed by the CPU is a process which requires a highly specialized knowledge
of soft- and hardware concepts. In order to avoid such a processing of a model, a GPL
is instead selected as a target for code generation. On the one hand, the source code as
generated from textual models can then be further processed by existing tools as available
for the respective programming languages, e.g., editors, verifiers or solvers. On the other

CHAPTER 2 FUNDAMENTALS

@ ®

T Interpreter Faay eemmmmm—all
Ll ~ PLd ~a
/ v
. Programming Assembly Machine
Modeling L
odeling Language Language Code e
A\ A NS A
N S e -m -

~
.

e Generator - @

Figure 2.1: An overview of the processing workflow: A model stated in the source modeling
language is not executable and has to be processed by a generator or interpreter
to compilable code (1). This code represents an equivalent specification in a
programming language, e.g., C++ [Sch98|. Subsequently, a compiler generates
from the given code a corresponding set of atomic assembler instructions (2)
[Dunll]. Those instructions are finally processed to an equivalent set of binary
coded CPU instructions, representing an executable form of the initial model.

hand, the concern of low-level optimizations, e.g., memory access or handling of loops,
is delegated to the platform-specific compilers. Here, the clear single responsibility of
the DSL-processing framework is established: For a given textual model declared in the
DSL-specific syntax, generate an equivalent and imperative model in a general-purpose
programming language. Optimize only domain-specific concepts, e.g., simplify physical
units, and leave the remaining parts to the available general-purpose infrastructures.

After a model has been processed by the toolchain, the output can be used together
with other existing tools and frameworks for further analysis and optimization, or just
compiled to executable code on the corresponding platform. The key concept here is a
clear separation of problem-specific frameworks and general-purpose tools. This enables
the development of DSLs for arbitrary use cases, where only certain parts of the overall
process of making models executable have to be created or modified, while the remain-
ing workflow is used in a black-box manner. The focus, therefore, lies on a DSL-specific
collection of tools as required to generate, for a given model in the DSL, an equivalent
model in a programming language. However, the processing of a given model requires a se-
quence of complex steps, from the parsing of a model to an internal computer-processable
data structure, though to the generation of code for specific target platforms, e.g., simula-
tors. Here, the decomposition of the monolithic structure of the DSL-processing software
into subsystems and assisting components is a common approach for the engineering of a
DSL, where the individual complexity of each element becomes accessible as depicted in
Figure 2.2.

Before the actual processing of a given model can be executed, the input to the workflow
has to be specified. Using the syntax of the modeling language, the problem’s specifica-
tion is denoted with all required details as necessary for an unambiguous definition. Such
a declaration demonstrates the key advantages of using a DSL: The specialized syntax is
focused on the modeling of specific problems and leaves out information which is known to
the computer or can be derived from the context. Moreover, in contrast to keywords and
markers as often used in programming languages and general-purpose modeling languages,

2.1 DOMAIN-SPECIFIC MODELING LANGUAGES

Templates
—
Control- .| Workflow .| Function
script) "] Execution “| Library
A 4
— rd p 7 N \
Code,
Models . Model . Input Output Template ,| Reports,
|/ Processor L AST AST Engine etc
I
Frontend: Backend:
process transform generate

Figure 2.2: The architecture of a DSL [RH17]: The model-processing toolchain consists of

three major subsystems and several assisting components. A given model is
handed over to the model-processing frontend which parses it and creates an
internal representation, the Abstract Syntax Tree (AST). This representation is
then further analyzed and refined by the transformation and function library,
a collection of components which ensure the overall correctness of the given
model and employ subroutines for further modifications and transformations,
generating an output AST. The processed AST is finally handed over to the
backend subsystem which generates code in a format as specified in a set of
templates. The overall process is orchestrated by a workflow execution unit
whose behavior and individual steps can be customized by a control script.
The result of the overall process is a set of generated code, reports and other
artifacts.

CHAPTER 2 FUNDAMENTALS

Calculator Modeling —

1 calculator test_calculation: Language 9
2 declaration: domain-specific keywords
3 a=10
4 end unnecessary details left out
5
6 computation:

P | coherent
/ a={(a**2)/(a 7}5Trucfuring
8 end
9 end

Figure 2.3: A model in the Calculator Modeling Language (CML): Each set of calculations
is introduced in the calculator block and consists of a declarative part and
a computational part. Details, which are not required for an unambiguous
declaration, e.g., the type of a variable, are left out. Keywords of the language
are selected according to their respective domain, making the purpose of their
usage clear.

here, all keywords originate from the domain itself, making the concepts they denote easy
to comprehend. Users from the respective domains are therefore directly able to interact
with the modeling language without having to have experience with programming lan-
guages. Figure 2.3 illustrates a simple yet complete model in the Calculator Modeling
Language (CML). Although a graphical representation of a model can also be made pos-
sible, cf. UML [Rumll], in almost all cases the underlying structure of a stored model is
represented in a textual form.

A given model represents the input to the overall processing workflow. In order to
create a computer-processable data structure of a textual model, the workflow execution
unit delegates the handed over model to the model-processing frontend. This subsystem
consists of several major components:

e A Grammar [Lou] which specifies how syntactically correct models are constructed.

e A Lezer [Lou] which reads a given model as a stream of characters and generates a
stream of token objects, i.e., units which represent individual words in a model.

e A Parser [Lou| which consumes a generated token stream and creates an initial
internal representation, a Parse Tree [Lou], according to the grammar.

e A collection of Visitors [Gam95] which analyze a given parse tree and retrieve infor-
mation as required for further processing. This information can be optionally stored
in a refined representation, the Abstract Syntaz Tree (AST, [Par09]).

Each component is designed and constructed individually, decomposing the model-processing
frontend’s outer behavior into several, easily distinguishable steps. A grammar is hereby
used as the starting point for the construction of a DSL. Denoting the syntax of a modeling
language, this component has to be designed and implemented with possible future modi-
fications and adjustments in mind. It is therefore advisable to employ the same standards
as known from programming languages, namely modularity and simplicity. A grammar
can be composed of arbitrarily many sub-grammars distributed across several artifacts.

10

2.1 DOMAIN-SPECIFIC MODELING LANGUAGES

Antird grammar —y
1 grammar CVL; T . J
5 r\nmphcn‘ly defined token
as a valid set

3 Number: [0-9]+;

4 A__at least one digit
5 Plusliteral: ‘+’;

6 explicitly defined token
7 plusExpression: Number Plusliteral Number;

8 a grammar rule for the
addition of two values

Figure 2.4: An excerpt from the CML Grammar: Utilizing the syntax of Antlr [PLW™00],
the grammar denotes explicit and implicit definitions of tokens and their sub-
sequent usage in a grammar rule to define the addition of two values. In order
to distinguish tokens and grammar rules, the former are introduced with a
capital letter, the latter with a lowercase letter.

Here, modularity can be achieved by composing the core grammar from general-purpose
sub-grammars, e.g., a grammar defining mathematical expressions and a control structure
grammar. This leads to a situation where new languages can be created by means of the
Building Block approach [MT03], where only details have to be adjusted.

Each grammar is introduced by a set of Token Definitions, i.e., words which the declared
language expects to interact with in a concrete model. A token declaration defines the
sequence of characters, which, if it is detected in a given model, is interpreted as a concrete
instance of the corresponding token. Tokens can be defined explicitly, i.e., the sequence
of characters which has to match is given in the grammar, or implicitly where a regular
expression denotes the properties a word has to have to be recognized as a token of a
certain type.

Tokens represent the fundamental units of a grammar and are used in the second type of
declarations, namely the Grammar Rules. Fach rule states how tokens and sub-rules can
be combined to create syntactically valid sentences and therefore models in the language. A
sequence of tokens is hereby recognized as being constructed according to a given rule if the
order, as well as the type of the read-in tokens, correspond to the declaration. Figure 2.4
illustrates the definition of tokens and grammar rules in Antlr syntax [PLWT00] as used
for the declaration of the Calculator Modeling Language.

The grammar of a modeling language represents a formal specification constructed ac-
cording to a grammar definition language, making it an ideal candidate for the input of
supporting tools. Those tools can then be used to generate components whose structure
and behavior can be completely derived from a given grammar, namely the Lexer and
Parser. Given the strict and unambiguous definition of tokens and grammar rules, a set
of supporting tools, e.g., Antlr [PLWT00], is able to generate a lexer which reads in a
model and decomposes it into a stream of tokens. The task of the lexer is, therefore,
to iterate over a given model and hand over a new token of a specified type and value
whenever the corresponding definition has been detected. A parser consumes this stream
of tokens, identifies a suitable production and constructs an initial internal representation
of this rule. Here, most often a tree-like structure, the parse tree, is utilized to preserve the
structure of the initial model. Figure 2.5 demonstrates how a given model is decomposed

11

CHAPTER 2 FUNDAMENTALS

Lexer ——token stream
10 +2 » {:C:):} » {Number, PlusLiteral, Number}
Parse Tree
plus character token —— > Q « « Grammar
Rules
number token _,1 Parser

Figure 2.5: From a model to the parse tree: A model stored in a file is read in by the
lexer and decomposed into a stream of tokens; each token representing an
atomic unit as defined by the language’s grammar and contained in the model.
This token stream is handed over to the parser which inspects a given set of
grammar rules and selects, if available, an appropriate rule. According to the
selected rule, the tokens are rearranged into a tree structure, the parse tree.

into token instances by the lexer, analyzed by the parser according to the grammar rules
and finally reconstructed as a parse tree. Each token stores, among other details, the
actual text as read-in from the model as well as its source position, two properties which
are helpful whenever troubleshooting of models is intended.

A parse tree represents an elementary approach for the storage of models in a directly
computer-processable structure. However, often additional information or operations need
to be stored together with the nodes in the tree, making the immutable structure of the
parse tree inapplicable for further processing. In this case an intermediate form of the
model is derived, the Abstract Syntax Tree (AST). While a given node in the parse tree
is represented by a token object as generated during the parsing of a model, a node in
the AST is a data structure individually designed by hand. Each type of an AST node is
represented by a class which stores arbitrary information and provides additional methods
for required interactions, e.g., data retrieval. All details required to create a node in the
AST are derived by means of visitors, which implement a traversal routine as well as the
corresponding information collecting operations on the parse tree. Although the creation
of an AST can be implemented as a part of the parsing process, cf. MontiCore [KRV10],
a clear separation of the model-parsing and AST-creating routines can be beneficial in
terms of maintainability and modularity, making the traversal and information derivation
process on the parse tree a modular and exchangeable component. Figure 2.6 outlines
how a visitor is used to create an AST from a given parse tree. The abstract syntax tree
serves as the final representation of the textual model before being further processed by
the next subsystem of the DSL-processing tools collection.

Here, an encapsulation of the model-processing frontend as a single unit benefits the
overall maintainability and re-usability of the toolchain. The task of this subsystem is
solely to create a modifiable internal representation of the model. The concrete checks and
modifications can then be implemented in other components. Moreover, all modifications
concerning the grammar of the language are located in a single component, making them
transparent to other subsystems. Here, information hiding is achieved by utilizing the

12

2.1 DOMAIN-SPECIFIC MODELING LANGUAGES

Parse TW@ Syntax Tree
plus character token Q T
0 “ AST addition node

number token ——=7 Visitor A__— AST integer node

Figure 2.6: The construction of an AST: A parse tree represents an immutable data struc-
ture with a limited set of stored information. In order to store more model-
related details, an abstract syntax tree is initialized by utilizing a wisitor which
traverse a parse tree and retrieves all required details.

AST creating routine as the interface to the frontend.

Up to now the lexer and parser have ensured syntactical correctness of a processed
model, since otherwise either an invalid token or no corresponding grammar rule would
have been found. However, for the sake of an overall correctness of a given model, also the
semantical soundness has to be ensured. The concept of soundness is hereby represented by
a broad set of rules which have to be fulfilled by a given model. Starting with properties
which always have to hold, e.g., that all used variables are defined, through to more
complex and domain-specific properties, e.g., that no assignments are made to read-only
ports, it is possible to specify a list of situations where no correctness of generated results
can be guaranteed. This idea originates from the concept of Design by Contract [Mey02],
where models which fulfill a set of pre-conditions are guaranteed to be processed to correct
counter pieces which fulfill a set of post-conditions, e.g., a correct syntactical structure
on the target platform. In order to ensure those properties, a so-called Symbol Table
[HMSNR15, Fowl0] and a set of Context Conditions [Ruml7]| are implemented. The
concepts as implemented in these components provide a possible solution to the context-
insensitive nature of Context Free Grammars [BW84], a class of grammars and grammar
specification languages where rules are not able to take their context, i.e., neighboring
elements, into account.

The symbol table serves as a central unit, storing all context-related information of a
model. All details which are implicitly contained in the AST are made explicit by analyzing
the tree and creating for each declared element a symbol [Fowl0], and for each block of
statements a scope [Fowl0] with arbitrarily many symbols and sub-scopes. By storing
this information in a tree or map-like structure, it can be easily derived which elements
have been defined in which scopes, which properties the declared elements have, and in
conclusion which conflicts exist in the initial model. Figure 2.7 illustrates how a symbol
table is constructed from a textual model.

Although some context-related properties of a given model, e.g., the question whether
elements have been redeclared, can be checked during the construction of the symbol table,
other require an overall complete symbol table to ensure a correct context. Representing an
individual component, a set of context conditions is used to detect broken contexts or warn
the user of potential mistakes. Here, domain- and task-related rules can be implemented
to restrict the set of semantically correct models. Context conditions are implemented
by defining two properties: The type of elements in a model whose correctness should

13

CHAPTER 2 FUNDAMENTALS

calculator test_calculation: CMLR Global Scope

declaration: ~

b=20""~~~.__
end "-el. TTTee~ll | aF > o @ Local Scope

_______________ 7 .5
computation:™"} TTTmmeell L e-emmTT LT
c_=~a+b* *2 ; __ >
end TS~o_ -

end

Figure 2.7: Construction of a symbol table: The declaration block defines a global scope
for variables. All variables defined in this scope are therefore available in all
sub-scopes. The computation scope defines a local scope as used to compute
new values. A local scope with its defined variables is embedded in the global
one.

be checked, and an individual definition of correctness in the corresponding context. For
instance, a context condition could traverse a given abstract syntax tree, and whenever
an expression has been detected, check according to the previously created symbol table
if all referenced variables have been defined.

Having an in terms of syntax and the specified context conditions correct model, the sec-
ond component as contained in the transformation and function library can be executed
to restructure the model to a different form. Arbitrary and use case-specific processes
and transformations can be implemented in order to modify the internal representation
according to the given requirements. For instance, in the context of CML a transfor-
mation substitutes redundant computations of the same value by a reference to a single
intermediate variable containing this value, making the computation required to solve the
problem even faster. This process is enabled by the mutable structure of the AST which
can be easily adjusted or extended, demonstrating the advantage of using an AST over
the immutable parse tree. All parts of the AST can be replaced or removed, while new
elements can be easily attached. However, due to its complexity, most often an automated
generation of the transformation is not possible. In conclusion, all transformations on the
model have to be implemented completely by hand, making a manual review process as
well as involvement of domain experts mandatory.

A correct and, in some cases, optimized and extended AST represents the final instance
before being generated to a target format. The approach to generate an output can be
classified according to certain specifications [Sch17], namely whether its generation has
been conducted by using a meta model or not. In this context, the meta model is one
or more artifacts specifying the syntax of the target platform. In the case of DSLs, most
often a programming language is selected as the target. However, modeling of the target
by means of a meta model unnecessarily complicates the process, considering that only a
limited set of concepts of the target platform is utilized, making many parts of the meta
model unnecessary. Thus, in the case of NestML, a simple model to text [Sch17] approach is
used, where the target is generated without using a meta model as an assisting component.
The most common approach to generate a target-specific and persistent representation of

14

2.1 DOMAIN-SPECIFIC MODELING LANGUAGES

target-specific

AST deT_cII_ils addled‘t \ Jinja2 templates .
Engine int result = {{Inode.getValue(}}} + {{rnode. getValue(}}};
0 0 template engine\/
directives

¥

intresult=10+ 2;

C++

Figure 2.8: The code-generating Backend: In order to make modifications to the internal
representation persistent and store the results in a required format, a Genera-
tor Engine, e.g., Jinja2 [Ron08], is employed. This component iterates over a
template written in the respective declaration language and replaces placehold-
ers by details as contained in the AST. Embedded directives to the generator
engine are executed and their result used, while the remaining part is sim-
ply copied. The result is a model-specific file adapted to the required target
platform.

the modified AST is the usage of a Generator Engine'[GBR04]. Utilizing a template, this
component inspects a handed over AST and replaces placeholders and directives with the
corresponding elements from the AST, making this approach ideal for use cases where
the output can be schematically described. Figure 2.8 illustrates an excerpt from the
template as used to generate models of the calculator modeling language to compilable
C++ code. As with the model-processing frontend, it can be beneficial to encapsulate a
target platform-specific backend in a single subsystem. The interface to this subsystem is
represented by the collection of methods used to generate the model in a specific format.
By following this concept, it is easily possible to extend a given DSL-processing framework
with new target platforms, where only the backend with its target-specific components has
to be implemented.

The compilable code represents the overall result as generated by the backend. This code
can now be used with conventional tools, compilers and editors to create the corresponding
executable binaries. Figure 2.9 demonstrates the generated results. In conclusion, the task
of a DSL toolchain is not simply to transform a model to a target-specific format, but also
to enrich it by additional details, among others types and concrete operators.

Given the modular structure of the DSL-processing toolchain, it is easily possible to
insert or delete steps in the processing of a given model. The workflow introduced above
represents one possible implementation and may, therefore, differ in certain scenarios. In
some cases, where correctness of models can be assumed, it is not required to utilize a
symbol table and the corresponding context conditions. Whenever models do not have
to be modified, it may be beneficial to directly interact with the parse tree instead of

'also referred to as Template Engine [Ruml17]

15

CHAPTER 2 FUNDAMENTALS

(red = added details)

#include "iostream*
#include <math.h>

calculator t?st_calculation: int main(){

declaration: . .

a=10—"" ———>inta = (int) 10;

b=22 . . ,

intb = (int) 22;

end R (int)
computation: a=a2;

a=aw? b=b+a/10 + pow(2,2);

b=b+a/10+2*2
end _/ / std::cout << "The results are:" << std::endl;

end stdicout << "a=" << a << std::endl;
std::cout << "b=" << b << std::endl;
return 0;

}

Figure 2.9: A comparison of models: The initial model in the calculator modeling language
is processed by the DSL framework to compilable C++ code. In order to
enable compilers to process the given model, the model is generated in target-
specific format and enriched by required standard properties, e.g., brackets and
libraries. The backend derives details regarding the type of the variables and
enriches the generated model by respective specifications. Finally, instructions
for a visualization of results are added.

creating a modifiable AST. In situations where certain details of the target model cannot
be derived by the toolchain, it is also possible to enable the injection of handwritten code.
All these scenarios underline the necessity of a modular system rather than a monolithic
structure of the toolchain.

In conclusion, while a black-box view on the DSL processing tools indicates a complex
and monolithic system, a white-box view demonstrates that all individual components,
starting from a lexer and parser, through to the generator engine, have an easy to imple-
ment task. Although the presented fundamentals demonstrate the general approach for
construction of a DSL, a basic understanding of the presented concepts can also be ben-
eficial whenever certain parts of an existing system have to be modified. All approaches,
tools, and details as presented in this section will be utilized in chapter 3 in order to
reengineer and reimplement the existing components of NestML on a new platform.

2.2 Methodology and Reuse of Components

The trend of rising size and complexity of software as observable since the introduction of
the first computer systems [Hel96] makes research in the field of software reuse approaches
a crucial activity in order to ensure the stability and correctness of products. Over the
years many different techniques and possibilities to reuse existing concepts, code bases
and components have been developed and tested. MontiCore, cf. chapter 6, demonstrates
how components can be generated from a user-supplied system model and, therefore,

16

2.2 METHODOLOGY AND REUSE OF COMPONENTS

implements the concept of program generators [Hem93]. Design patterns [VHIG95] on
the architecture and implementation level represent a different approach to reuse existing
knowledge during the creation of new software. Here, instead of providing concrete code
which can be integrated into the project, a general idea is given how certain components
have to be designed in order to achieve a higher level of maintainability and modular-
ity. The pipelining of a read-in model as implemented in the overall DSL approach, cf.
section 2.1, represents a modified instance of the pipes and filter pattern [BHS07], while
all AST classes generated by MontiCore [RH17] contain an implementation of the builder
pattern [BHS07]. The utilization of patterns represents a reuse approach which has to
be regarded independently of the concrete domain and use case, making it a technique
which should always be applied during the engineering of software. The remaining part of
this chapter will, therefore, focus on more specific techniques, approaches, and tools which
can be employed to accelerate and ensure certain quality standards of the reengineered
NestML framework as introduced in chapter 3.

Chapter 1 outlined how MontiCore can be used to generate a set of components rep-
resenting the overall infrastructure required to create a model-processing frontend. Here,
no additional tools and libraries are required to be able to process a given model to the
corresponding internal representation. In contrast to the generated AST classes which are
completely independent of concrete tools, the generated lexer and parser require the Antlr
runtime environment [PLW*100], making it a hard dependency whenever the generated
code shall be used. Besides MontiCore and in consequence Antlr, many other lexer and
parser generators can be employed. The Calculator Modeling Language (CML) as intro-
duced in section 2.1 has been used to conduct a brief survey on the usability of other tools
which can be applied to reuse existing technology. For this purpose, two additional lexer
and parser generators were tested for their applicability.

The Ply [pyt17b] lexer and parser generator represents a Python implementation of
the Lex and Yacc [LMB92] tools. Here, the overall grammar of a language is defined as
Python code and is therefore not contained in a separate artifact. Moreover, each token
has to be provided with a definition and an executable function in order to achieve a
specific processing. Figure 2.10 visualizes a single definition of a rule as used to enable
the parser to recognize an addition of two values. The grammar rule, as well as the
corresponding processing, is defined in a single method. The use case of CML has shown
that while Ply provides a highly customizable behavior where many components can be
individually adapted to specific needs, it also requires an in-depth understanding of the
general lexer and parser concepts to apply all required principles correctly. Moreover,
given the monolithic definition of the grammar, where all components are defined in a
single Python artifact, this approach prevents an easily maintainable structure of the
software where elements can be adjusted individually. Modularity of the components on
the artifact level can therefore not be enforced.

PyParsing [McGO07] is yet a different tool which was tested for its applicability. Here,
grammar and parser rules are defined as Python code and consist of calls to individual
functions representing token definitions and sub-rules. Each rule corresponds to the return
value of a specific function. Figure 2.11 illustrates the definition of a rule as used to the
define addition of two values. This approach represents a valid alternative to the definition
of a grammar as a composition of rules and tokens in a specific syntax and as a separate

17

CHAPTER 2 FUNDAMENTALS

2 nnn
3 astExpression : astExpression PLUS astExpression
4 e | number; processing according to
> the grammar in comments
6 if type(p[l])==int:
7 p[0] = ASTNumericLiteral. makeLiteral(p[1])
8 eliflen(p)==3 and p[2] == ,+":
9 p[0] = ASTExpr.makeTerm(p[1], p[3])
10 p[0].isUnaryPlus = True AST creation during parsing
11

Figure 2.10: Definition of a grammar rule in Ply [pyt17b]: Each rule is defined as a function
in Python syntax. A definition of the rule is stated in BNF form [MR] in
the comment section of the function. The corresponding body defines the
routine on elements as executed whenever a stream of tokens is detected to
be constructed according to the grammar rule. Here, the grammar as stated
in the comment is inspected by the method and details are retrieved.

definition of rules as function calls
1 import pvparsing‘V
2 V predefined token definitions

3 number = pp.Word(pp.nums)
4 expression = pp.Or([number, expression + pp.Literal("+’) + expression])

> alternatives provided as lists

Figure 2.11: Definition of a grammar rule in PyParsing [McGO07]: Each rule is defined
as the return value of a function call. A set of predefined, common token
definitions can be reused in order to reduce the overall grammar. Alternatives,
optionality, and repetition is marked by a call to the corresponding function,
e.g., the Or function call to declare a set of alternatives.

artifact. Moreover, by using calls to predefined functions, no user-defined routines have
to be written, making a composition of grammars and rules easy to achieve. Nonetheless,
while this approach may be applicable in the case where small grammars represent the
whole required syntax of a DSL, it becomes less maintainable and modifiable whenever a
larger grammar with more rules and complex right-hand sides is required, making it less
appropriate for modeling languages with complex structures. Moreover, several features as
included in Antlr, e.g., additional channels for streams of tokens, are hard to implement and
maintain in PyParsing. Token stream channels are used to filter out certain specification of
the read-in model, e.g., white lines, by handing them over to a different stream. Although
not crucial, such a feature is beneficial whenever a certain handling, e.g., processing of
source model comments, has to be implemented.

In conclusion, we see that MontiCore and Antlr represent the best alternative for the
generation of a lexer, a parser as well as the AST infrastructure. Besides providing an

18

2.2 METHODOLOGY AND REUSE OF COMPONENTS

expressive concept for a definition of grammars, it also enables the user to directly influence
the generated lexer and parser with handwritten code. Moreover, by encapsulating the
definition in a separate file, a clear separation of concerns and single responsibility is
achieved. Here, the grammar defines the what, while the generated lexer and parser the
how, instead of mixing both concepts in a single artifact. Although Ply and PyParsing
can be used to generate or implement a lexer and parser, these libraries do not feature
a concept for the generation of additional components as required to store and interact
with a read-in model, among others the corresponding AST data structure and visitors.
MontiCore and its concept for the generation of components is therefore a clear favorite
for the engineering of a DSL.

As discussed in section 2.1, most components required in the transformation and func-
tion library cannot be generated or reused and consequently have to be implemented by
hand. In the case of NestML, only a subsystem for the processing and storage of physical
units as often required in the computational neuroscience has been found to be applicable.
For this purpose, two existing implementations were tested.

Sympy [JCMGH] and especially its Physics package represents a possible implemen-
tation for the handling of physical units. Each unit is stored as an object consisting of
several properties describing its structure. A physical unit is represented by a base, e.g.
the electric potential in volt, and the corresponding magnitude definition. By encapsu-
lating those properties in a single object and providing an overwritten behavior for the
standard arithmetic operations, this module enables the calculation and derivation of new
physical units, a concept which is often required whenever type checking of expressions
is intended. However, one of the key drawbacks of using Sympy’s physics module is the
handling of equality checks for combined and complex units. While atomic parts of a given
expression in a neuron model tend to have simple units, e.g., a single variable storing a
value in millivolt, compound expressions often results in complex, combined units. The
selected unit system should be able to derive new units by combining existing ones. How-
ever, while SymPy supports such a handling, the concept of equality is lost. Derived units
such as newton and the combination of their base units kg * m/s? are not recognized as
being equal. This circumstance prevents a valid type checking of expressions whenever
physical units are involved.

The AstroPy [ART'13] module implements a similar approach by storing units as com-
posable objects. Besides providing a similar concept for arithmetic operations, it is also
possible to define new physical systems, i.e., systems where a specified set of units is re-
garded as the base units. Moreover, each unit object stores an additional set of properties
as often required during a type checking routine. Utilizing these properties, it is easily
possible to derive for a given unit all available, equivalent representations. In conclusion,
the aforementioned problem of inequality between newton and kgxm/s? is no longer given.
Instead, the underlying base units of a compound one are compared, thus equality for ar-
bitrary combinations can be ensured. The clear separation of the units and magnitudes
enables a type checking system to regard units which only differ in a prefix as being equal.
AstroPy and its underlying units type system are therefore the most fitting solution for
processes where derivation of new units and equality checks represent the main goal.

The last component which can often be reused during the engineering of a DSL is a
generator engine as employed in the code generator. Here, a vast amount of solutions

19

CHAPTER 2 FUNDAMENTALS

1 #for Sj in SgetDecl()

2 int ${j.getName().prettyPrint()} = (int)S{j.getExpr().prettyPrint()};
3 #end for

1 {% for j in getDecl() %} Jinja
2 int {{j.getName().prettyPrint()}} = (int){{ j.getExpr().prettyPrint()}};
3 {% endfor %}

1<?py forjini.getDecl(): ?>

2 int ${j.getName().prettyPrint()} = (int)${j.getExpr().prettyPrint(}};
3 <?py #endfor ?>

Figure 2.12: A comparison of templates as used to generate CML models to compilable
C++ code. Here, all three engines Cheetah [chel7], Jinja [jinl7] and Tenjin
[ten17] utilize an almost equal syntax and provide a similar set of instructions.
Details are only found in the corresponding implementation and execution
time of the engines.

exists, from light-weight and fast renderers for web pages, through to complex and ex-
pressive engines for the generation of compilable code. However, most often engines only
differ in detail and provide a similar set of functionality. A brief survey revealed that
all concepts required for the reengineering of NestML are available in almost all common
generator engines. Here, Cheetah [chel7], Jinja2 [jinl7] and Tenjin [tenl7] were tested.
As demonstrated in Figure 2.12, all three components utilize an almost equal syntax and
instruction set. In conclusion, the reasons for deciding in favor of Jinja2 was the fact,
that it provides the most in-detail documentation of the tool’s usage and implementation.
Moreover, Jinja2 is used in a wide range of projects, amongst others by Mozilla [mozl7]
and SourceForge [soul7], thus a long-term support of the tool is expected.

All components introduced in this chapter will be used in chapter 3 and chapter 4 in
order to employ the reuse of existing components and follow the building block approach.
However, we will also present an additional set of techniques and patterns as applied in
the reengineered NestML framework.

20

Chapter 3
The model-processing Frontend

The previous chapter introduced the overall architecture of a DSL, all required model-
processing steps as well as a set of reusable components. These fundamentals will now be
used to reengineer the existing NestML framework and perform a platform migration to
Python. In this chapter we will demonstrate how the model-processing frontend has been
reeingeered. To this end, it is first necessary to parse a textual model to an internal repre-
sentation by means of a lezer and parser. Section 3.1 introduces this subsystem together
with a collection of AST classes and the ASTBuilderVisitor, a component which extracts
an AST representation from a given parse tree. Subsequently, the CommentCollectorVisi-
tor and its underlying process responsible for the extraction of comments from the source
model and their correct storing in the AST is demonstrated, making the generation of self-
documenting models possible. Having a model’s AST, it remains to check its semantical
correctness. For this purpose, section 3.2 will first introduce a data structure for storing
of context-related details, namely the Symbol classes. Here, we also show how modeled
data types can be represented and stored. In order to provide a basic set of constants and
functions predefined in NestML, the predefined subsystem is implemented. With a parsed
model stored in an AST and a structure for storing context information, the frontend pro-
ceeds to collect context details of the model. Demonstrated in section 3.3 together with
the SymbolTable and a set of context conditions, the ASTSymbolTableVisitor ensures se-
mantical correctness. After all context conditions have been checked, the frontend’s model
processing is complete. All steps outlined above are orchestrated by the ModelParser class
which represents the interface to the model-processing frontend. The chapter is concluded
in section 3.4 by an introduction to the set of assisting components. Figure 3.1 subsumes
the concepts demonstrated in this chapter. In order to avoid ambiguity, we refer to the
reengineered framework as PyNestML.

3.1 Lexer, Parser and AST classes

As introduced in section 2.1, the first step during the processing of a textual model is
the creation of an internal representation by means of an AST. For this purpose, it is
first necessary to implement a lexer and parser which read in a textual model and create
a respective parse tree. However, the parse tree represents an immutable data structure
where no data retrieval and modification operations are provided, making required trans-
formations and interactions difficult. Consequently, a refined representation in the from
of an AST has to be derived. It is therefore necessary to implement a collection of AST
classes used to store individual elements of the AST. In order to retrieve all required in-

21

CHAPTER 3 THE MODEL-PROCESSING FRONTEND

Structure/CD

ModelParser

— —
Semantic

Lexer & Parser [---- > ASTBuilderVisitor [---> Comme_nFCO”eCtor F--- > ASTSV'_n_bOITabIe F--- >
Visitor Visitor Checks

1
<<generated from>> |

‘l’ - \I' E<<checks>>
Grammar AST Classes Predefined Symbols |
System E

<<conforms to>>

Figure 3.1: Overview of the model-processing Frontend: The lexer and parser process a
textual model to the corresponding parse tree and can be completely gener-
ated from a grammar artifact. The AST BuilderVisitor is responsible for the
initialization of a model’s AST, employing classes which conform to the DSL’s
grammar. After the AST has been constructed, the CommentCollectorVisi-
tor collects and stores all comments stated in the source model. The AST-
SymbolTable Visitor subsequently collects context information of the model by
utilizing Symbols and the predefined subsystem. Semantic Checks conclude
the processing by checking the model for semantical correctness. All steps are
orchestrated by the ModelParser.

formation from the parse tree and instantiate a respective AST, the ASTBuilderVisitor
is implemented. The result is a model’s AST which can be used for further checks and
modifications. All these steps are encapsulated in the orchestrating ModelParser class.
Figure 3.2 provides an overview of the components as introduced in this section.

Although possible, lexer and parser are usually not implemented by hand but rather
generated from their respective grammar. Section 2.1 demonstrated several existing tools
and approaches for component generation. In the case of PyNestML, Antlr was selected to
define the grammar and generate the lexer and parser. For this purpose, it is first necessary
to create the grammar of the language. Fortunately, the grammar artifact as found in
NestML can be completely reused and has only to be adapted. chapter 9 demonstrates
the reworked grammar as used in PyNestML. Although modular and easy to understand,
PyNestML’s grammar is still an artifact of several hundreds lines of code. In the following
we will therefore use a simplified working example as depicted in Figure 3.3. The grammar
is hereby an artifact structured according to Antlr’s syntax and defines which rules and
tokens the language accepts, cf. section 2.1. All concepts as introduced for the working
example are implemented analogously for the complete grammar.

Starting from the grammar, Antlr is used to generate the respective lexer and parser,
making an error-prone implementation by hand unnecessary. Consequently, these com-
ponents can be used in a black-box manner, where only the interface is of interest. The
generated lexer expects a file or string to parse, and returns the respective token stream.
As Figure 3.8 illustrates, storing and interacting with the stream of tokens can be bene-

22

3.1 LEXER, PARSER AND AST CLASSES

1

ModelParser

+ parseModel(...)

+ parseDeclaration(...)

ParseTreeVisitor
7N AST Classes

ASTBuilderVisitor ASTNeuron

Lexer & Parser - comments ASTBlock

S|+ visitiASTClass)..) ASTNodeFactory f S
- ASTE i
™~ + make{ASTClass}(...) __XPFESSIOH

____________ »| Grammar <<conforms to>> _____.-==""

Figure 3.2: Overview of the lexer, parser and the AST classes: The grammar represents

LooNOL B WNERE

o el
coN O UL WwNEP O

the artifact from which the lexer and parser are generated. Moreover, the
ASTBuilderVisitor class extends the generated ParseTreeVisitor class and
transforms the handed over parse tree to the respective AST. The ASTNode-
Factory features a set of operations for node initialization. The ModelParser
encapsulates all processes and can be used to parse complete models or single
statements.

grammar PyNestML;
everything between # and end of line

put on a different token channel
COMMENT: ("#' (~("\n' ['\r'))*) -> channel(2);
NAME : ([a-zA-Z] | '_' | '$')([a-zA-Z] | '_' | [0-9] | '$")%;

INTEGER : [1-9][0-9]* | '0"; tring. int 4 boolean literdl
\ . , ——— __ _string, integer and boolean literals
BOOLEAN: 'True' | 'False’;

each neuron model introduced by the neuron's name
neuron: 'neuron' NAME (block)* EOF;

block: NAME ":' (assignment | declaration)* 'end’;
assignment: NAME '=' expression; blocks of assignments and declarations
declaration: NAME type ('=' expression)?;
type: 'integer' | 'boolean' | 'string';
expression: simpleExpression

| expression ('*'|'/') expression

| expression ('+'|'-') expression;
simpleExpression: NAME | BOOLEAN | INTEGER;

arithmetic combinations of terminals

Figure 3.3: A simplified grammar: Each neuron model is introduced by the keyword neu-

ron and the neuron’s name. A model is composed of an arbitrary number of
blocks consisting of a name and a set of declarations and assignments. Decla-
rations consist of a name, the data type and a value defining expression, while
assignments only utilize a left-hand side name and a value providing expres-
sion. Faxpressions are either simple, i.e., a string, boolean or integer literal, or
arithmetic combinations of other expressions.

23

CHAPTER 3 THE MODEL-PROCESSING FRONTEND

Tokenizin i i
g Parsing Token Building AST Collecting
Text Stream Comments

[appropriate grammar
rule not found]
terminate

[token not recognized | | \/.\/
file not found] &/

terminate

Figure 3.4: The model-parsing process: First, a model is decomposed into a stream of
token objects. If a literal in the model is not constructed according to the token
definitions, the process is terminated and the problem reported. Otherwise,
the token stream is handed over to the parser which constructs a parse tree by
taking the grammar rules into account. For sequences of tokens which are not
constructed according to a grammar rule, an error is reported and the process
terminated. A constructed parse tree is handed over to the ASTBuilderVisitor
which constructs the respective AST. Finally, all comments are retrieved and
stored.

ficial whenever a derivation of additional details in the initial model is required, e.g., the
model comments. The token stream is handed over to the parser which creates a parse
tree representation of the model according to the grammar rules. Both steps as well as
the derivation of an AST are encapsulated in the ModelParser class whose parseModel
behavior is illustrated in Figure 3.4. Besides complete models, it is also often of interest to
parse single instructions or expressions from a given string, e.g., for AST-to-AST transfor-
mations. The ModelParser class therefore provides parsing methods for each production
in the grammar artifact, which can then be used to parse the respective element directly
from a given string. In all cases, first, the parse tree is created by means of the generated
lexer and parser. Subsequently, the further on introduced ASTBuilderVisitor is used to
derive a respective AST representation.

AST classes couple fields for all required values with data retrieval and modification
operations, cf. Figure 3.5. The abstract ASTNode class represents the base class which is
extended by all concrete node classes. It implements features which are common for all
concrete nodes, namely the source location of the element, a comment field as well as a
reference to the respective scope of the element, cf. section 3.3. Moreover, it prescribes
abstract methods which have to be implemented by all subclasses: The equals method
can be used to check whether two objects are equal in terms of their properties, while an
overwritten __str_ method returns a human-readable form of the element. The concrete
accept method is used by the further on introduced visitors in order to interact with the
object.

A source location is an object of the SourceLocation class. By encapsulating this prop-
erty in a separate class it is possible to provide a set of common utility. Among others the
following two methods were implemented: The before function checks whether the cur-
rent source location in the model is before a handed over one, while the encloses function
indicates whether one source location encloses a different one.

24

3.1 LEXER, PARSER AND AST CLASSES

ASTNodeFactory ASTNode SourcelLocation
+ makeASTNeuron(...) - sourcePosition - startll_ine, startColumn
+ makeASTBlock(...) - comment - endLine, endColumn
+ makeASTAssignment{...) - Scope + before(...)
+ makeASTDeclaration(...) +equals(...) + encloses(...)
+ makeASTExpression(...) +_str_()
+ makeASTSimpleExpression(...) + accept(...)
AST Classes ﬂ&

| ASTNeuron || ASTDeclaration |

| ASTBlock || ASTExpression |

| ASTAssignment || ASTSimpleExpression |

Figure 3.5: Overview of the AST classes: The ASTNode represents a base class for all
concrete AST classes. Each AST node stores a reference to a SourceLocation
object, representing the position in the textual model where the element has
been defined. The ASTNodeFactory is used to create new instances of AST
nodes.

Concrete AST classes are implemented according to the DSL’s grammar. Explicit ter-
minals such as the plus symbol are indicated by boolean fields, e.g., storing {rue whenever
a respective terminal has been used. Implicitly declared terminals, e.g., NAME, are stored
with the values stated in the textual model. References to sub-productions such as the sim-
ple expression are treated in the same manner, although here a reference to the initialized
AST node of the sub-production is stored. Besides standard functionality for the retrieval
of data, each AST class inherits and implements all operations as declared in the abstract
ASTNode class. Figure 3.6 illustrates how the ASTFExpression and ASTSimpleEzprssion
classes are constructed from the respective production in the grammar.

Due to Python’s missing concept of method overloading, it is not possible to define
several standard constructors for a single AST class. This problem is tackled by means
of the factory pattern [Gam95]. For each instantiable node, the ASTNodeFactory class
defines one or more operations which can be invoked to return a new object of the respective
class, cf. Figure 3.5. By providing all functions with a distinct name, method overloading
is avoided.

The ASTBuilderVisitor class implements a parse tree visiting process which initializes
the respective AST representation, cf. Figure 3.2. As demonstrated in Figure 3.7, the
processing encapsulated in this class visits all nodes in a model’s parse tree and creates
AST nodes with the retrieved information. The parse tree stores all terminals, e.g., numeric
values, as strings. For token classes which model value classes, e.g., strings or numeric
values, their values are stored in correctly typed attributes of the AST. For each field of
a parse tree node, the ASTBuilderVisitor therefore checks whether a value is available,
e.g., a stated numeric literal. In cases where a value has been provided, it is retrieved,
correctly casted and stored in the AST node. For non-terminals, the procedure is executed

25

CHAPTER 3 THE MODEL-PROCESSING FRONTEND

L —
ASTExpression 1
- simpleExpression

- lhs, rhs > ASTNode

- isPlus, isMinus, isTimes, isDiv /\

prts + getter/setter

e +equals(...)
1# PyNestML Grammiar Antlr +_str_() ; ,
2. L/,—"’ +accept(...) ASTSimpleExpression
3 expression: simpleExpression 011" name
4 | expression ('*'|'/') expression - boolean
5 | expression ('+'|'-') expression; - integer
GsimpIeEprgfsion: NAME | BOOLEAN | INTEGER; + getter/setter
----------- 7| + equals(...)
--------------- e st)
e SSconforms to>> + accept(...)

Figure 3.6: From Grammar to AST Classes: Each production in the grammar is used
to construct a new AST class. For each terminal and referenced sub-rule,
an attribute is created. A set of operations provides functionality for the
visualization of nodes, data retrieval, and manipulation.

recursively by calling the wvisit method. The result is an initialized AST.

Although not crucial for the correct generation of a model implementation, comments as
contained in the source model can be beneficial whenever an inspection of generated code is
necessary. Here, it is often intended to retain source comments. As declared in chapter 9,
the lexer hands all elements embedded in comment tags over to a different token channel.
Each comment is delegated to the comment channel, where all comment tokens are stored
and retrieved whenever required. In order to extract and transfer comments from tokens
to their respective AST nodes, the CommentCollectorVisitor has been implemented, cf.
Figure 3.8. It inspects the token stream and retrieves all comments which belong to the
corresponding node. For this purpose, the CommentCollectorVisitor stores a reference
to the initial token stream. Moreover, four methods are provided: The getComment
function represents the orchestrating method and is used to invoke the collection of all
pre-comments (stated before a statement or block), the in-comments (single line comments
in the same line) and finally the post-comments stated after a statement or block in the
textual model. In the following we exemplily the processing of pre-comments, the same
procedure is applied analogously for the collecting of in- and post-comments. It should
be noted that detection of a comment’s target is ambiguous. For instance, in a situation
where two statements with a single comment in between are given without any white-line
separating one or the other, it is not possible to determine whether it represents a post-
comment of the first statement or the pre-comment of the second one. The following simple
yet sufficient concept has been developed: In order to highlight a comment as belonging
to a certain element, it is necessary to separate the comment by means of a white-line
as demonstrated in Figure 3.9. In the case that no white-line is injected, the comment is
handed over to the previous and subsequent element. The user is therefore able to denote
which comments belong to which element by inserting additional newlines.

The processing of pre-comments is implemented in the following manner: First, the

26

3.1 LEXER, PARSER AND AST CLASSES

W oo ~NOYU B WN

N e e e
NOoO b WN RO

Figure 3.7:

Figure 3.8:

F—‘rhe parse free

def visitSimpleExpression(self, ctx):

boolean = ({True if re.match(r'[Tt]rue', str(ctx.BOOLEAN())) else False)
if ctx.BOOLEAN() is not None else None)
if ctx.INTEGER() is not None:

integer = int{str(ctx.INTEGER()))
if ctx. NAME() is not Noner store correctly

name = str(ctx.NAME()) typed value
store source location
sourceLoc = ASTNodeFactory.makeSourcelLocation(startLine=ctx.start.line,
startColumn=ctx.start.column,
endLine=ctx.stop.line,
endColumn=ctx.stop.column)
return ASTNodeFactory.makeASTSimpleExpression{boolean=boolean, integer=integer,

name=name, sourcelLocation=sourceLoc)
refturn new instance by

factory method

The ASTSimpleFExpression node creating method: With the overall structure
of the DSL in mind, this method is constructed to directly store correctly
typed values. The position of the element in the model is retrieved and stored
in a new SourceLocation object. Finally, a new AST node is created by the
respective factory method.

| ParseTreeVisitor |

i —

CommentCollectorVisitor AST
Classes

- tokens

+ getComments(...)

+ getPreComments(...)
+ getiInComments(...) H ASTBuilderVisitor
+ getPostComments(...)
+ visit(...)

The CommentCollectorVisitor: The visitor implements a process for the col-
lection of comments in arbitrary nodes of the parse tree. In order to simplify
the processing, merely the wisit method has to be called. This method dele-
gates the work to the getComments function and finally returns all collected
comments. The comment collector extends the ParseTree Visitor and is called
within the ASTBuilderVisitor whenever an AS'T is constructed.

27

CHAPTER 3 THE MODEL-PROCESSING FRONTEND

1 state:

2 " pre-comment “*” o A
V_mmV = 10mV # in comment "° white-line separation, 1 state:

comment assigned to both nodes
47" post-and pre-comment “”Z g 2 “"” pre-comment “””

5V_rest mV=-65mV V_mmV = 10mV # in comment
6 end “r bost-comment “” separating white-line,
5 comment farget unambiguous

6 V_rest mV =-65mV
7 end

Figure 3.9: Mllustration of the comment-processing routine: The target of a comment is
recognized unambiguously if a separating white-line is inserted, otherwise the
comment is added to both enclosing nodes.

CommentCollectorVisitor checks whether the processed node represents the first element
in the artifact (e.g., the first definition of a neuron). In this case, the number of white-lines
before the element is not relevant and all preceding comments are stored together with the
node. Otherwise, starting from the position of the current context, the token stream is
inspected in a reversed order. In the case that a normal element token (e.g., the declaration
of a variable) is detected, the loop is terminated since the next element has been reached.
If a comment token is detected, then it is put on a stack. Such a handling is required in
order to detect whether the comment belongs to the currently handled node, or represents
an in-comment of the previous node. If an empty line is detected, then all tokens on the
stack are stored in the list of returned comments. Whenever two subsequent white-line
tokens have been detected (thus a separating white-line), the overall process is terminated.
The visitor returns the collected list of comments in a reversed order to preserve the initial
ordering. This process is executed analogously for post-comments. However, here it is not
necessary to reverse the list or the token stream. A inverse traversal of the token stream
is only necessary to detect where a pre-comment has been terminated. In the case of
in-comments, no special handling is implemented. Instead it is simply checked whether
before the next end-of-line marker a comment token is contained. To make comments
more readable, the replaceDelimeters function removes all comment delimiters from the
comment string.

Separating the model-parsing and comment-collecting subprocesses leads to an even
clearer separation of concerns and benefits maintainability. New types of comment tags
can be easily implemented without the need to modify the AST builder. All modifications
are therefore focused in the CommentCollectorVisitor, while the initial grammar is kept
programming language-agnostic. The comment collecting operation is invoked during the
initialization of an individual AST node in the AST builder.

This section introduced the model-parsing process which constructs the AST from a
textual model. Here, we first introduced the starting point of each DSL, namely the
grammar artifact, and subsequently outlined how the implementation of a lexer and parser
by hand can be avoided by means of Antlr. Instead, these components were generated and
embedded into PyNestML. Due to the missing typing and assisting methods in the parse
tree as returned by the parser, a set of AST classes was implemented and introduced in
detail. Each class represents a data structure which is used to store details as retrieved from
the parse tree. To this end, the ASTBuilderVisitor class and its AST initializing approach
were demonstrated. The result of steps introduced above is a parsed model represented

28

3.2 SYMBOL AND TYPING SYSTEM

AstroPy

UnitType

Symbol

- elementReference
- scope

-name

- symbolKind

- comment

+ isDefinedBefore(...)

+ getter/setter <<enulmaration>>
-name + printSymbol() VariableType
- unit
uni SHAPE
+ equals(...) VARIABLE
+ getter/setter BUFFER
+ printUnit() ‘ EQUATION
TypeSymbol FunctionSymbol VariableSymbol
- .unit . o - paramTypes - blockType
- isinteger, isReal, isVoid l€&— - returnType _ vectorParameter <<enumaration>>
- isBoolean, isString, isBuffer -isPredefined - declaringExpression BlockType
+ equals(...) + equals(...) - initialValue STATE
+ getter/setter + getter/setter - isPredefined, isFunction PARAMETERS
+ printSymbol() + printSymbol() - isRecordable INTERNALS
- typeSymbol INITIAL_VALUES

- isConductanceBased
- variableType

+equals(...)
+ getter/setter
+ printSymbol()

EQUATION

LOCAL
INPUT_BUFFER_SPIKE
INPUT_BUFFER_CURRENT
QUTPUT

PREDEFINED

Figure 3.10: The Symbol subsystem: The abstract Symbol class prescribes common prop-
erties. This class is implemented by the TypeSymbol to represent concrete
types. FunctionSymbol and VariableSymbol store declared functions and vari-
ables. For more modularity, the UnitType class is used as around the AstroPy
unit system [ARTT13]. VariableType and BlockType represent enumerations
of possible types of variables and blocks.

through an AST. Finally, the CommentCollectorVisitor demonstated how comments in
source models can be collected and stored. Although not crucial for creation of correct
target artifacts, comments can still be beneficial troubleshooting the generated code.

3.2 Symbol and Typing System

Continuing with an initialized AST, PyNestML proceeds to start collect information re-
garding the context. For this purpose, we first establish a data structure for the storage of
context related details by means of symbol. Subsequently we demonstrate how predefined
properties of PyNestML are integrated by means of the predefined subsystem. Finally, we
show how types of expressions and declarations can be derived.

Chapter 2.1 demonstrated how symbols can be used to store details of pre- and user-
defined functions and variables. The abstract Symbol class represents a base class for
arbitrary symbols. It features attributes which are common for all concrete symbol types,
amongst others a reference to the AST node used to create the symbol, the scope in
which the element is located, the name of the symbol and a comment. Besides common
data encapsulation methods, only the isDefinedBefore method is provided. This method
checks whether a symbol has been defined before a certain source location and is used

during semantical checks, cf. section 3.3. Figure 3.10 provides an overview of classes as

29

CHAPTER 3 THE MODEL-PROCESSING FRONTEND

implemented in PyNestML to enable a storage of semantics and types.

A TypeSymbol represents a type as used in declarations and function signatures, and
can be either a primitive or a physical unit. In its current state, the type system supports
the primitive types integer, real, void, boolean and string. Whether a type is a primitive is
represented by a boolean field for each type, while physical units are stored as references
to the corresponding UnitType objects. The UnitType class is a simple wrapper for the
AstroPy unit system as introduced in section 2.2 and is used to couple an AstroPy unit
object [ART"13] with a processable name as well as equality- and data-access operations.
The final attribute of the TypeSymbol class is a boolean indicator whether a buffer or
non-buffer type is represented. As indicated in chapter 9, spike buffers can be declared
with an arbitrary data type. As we will demonstrate in chapter 4, the backend utilizes
different approaches for the generation of buffer and non-buffer types.

The VariableSymbol class represents the second type of symbols. Each VariableSymbol
object symbolizes a variable or constant as defined in the source model. It stores the
type of block in which it has been declared as an element of the BlockType enumeration
type. According to the grammar, each variable symbol can be defined in a state block,
the parameters or internals block, the initial values or equations block. Moreover, given
the fact that ports are regarded as variables with stored values, the block types input
buffer current, input buffer spike and output are provided. Finally, the type system is
able to mark variables as being declared in a local block, e.g., a user-defined function
block or the update block, or as a predefined element of PyNestML, e.g., the global time
variable ¢. The type of a block in which the element has been declared is required for the
correct generation of target platform-specific code as introduced in chapter 4. PyNestML
marks variables defined in the equations block as being shapes or equations. Variables
defined in the input block are marked as being a buffer, while all other elements are
simple wvariables. To this end, the VariableType enumeration type is implemented. By
utilizing such a specification it is easily possible to sort symbols according to the property
they represent. A corresponding getter function can then be used to retrieve buffers or
shapes as required in semantical checks and code generation, cf. section 3.3 and chapter 4.
The remaining attributes represent a collection of characteristics which are common for
declared elements: A variable symbol can have a vector parameter indicating that a vector
variable is given. The boolean fields is-predefined, is-function and is-recordable indicate
whether the elements have been marked by keywords in the source model or represent
predefined concepts, i.e., an element which is always available in PyNestML as in the
case of the global time variable t. The is-conductance-based marks buffers with the unit
type Siemens', while the type symbol stores a reference to an object representing the
type of the variable. The declaring expression as well as the initial value attributes are
used in the context of equations. The declaring expression field stores a reference to the
expression denoting how new values of the equation have to be computed. Analogously
the initial value stores the starting value of a differential equation. In the case that a non-
equation symbol is stored, the declaring expression is used to simply store a right-hand
side expression.

The FunctionSymbol is the last type of symbol and stores references to pre- and user-
defined functions. Consequently, each symbol consists of a name of the function, the return

! conductance-based buffers are processed differently during code generation in NEST

30

3.2 SYMBOL AND TYPING SYSTEM

Symbols [€

<<singleton>>

<<singleton>>
PredefinedUnits

<<singleton>>
PredefinedTypes

PredefinedVariables

- name2variable

- hame2unit
- prefixlessUnits
- prefixes

+ registerPredefinedUnits()
+ getUnit(...)

+ registerUnit(...)

+ getter

- hame2type

- REAL_TYPE = ,real”

- VOID_TYPE = ,void”

- BOOLEAN_TYPE = ,boolean”
- STRING_TYPE = ,string”

- INTEGER_TYPE = ,integer”

- E_CONSTANT = ,e’
- TIME_CONSTANT = ,t*

+ registerPredefinedVariables()
+ getVariable(...)
+ getter

<—|

+ registerPredefinedTypes()

<<singleton>>

PredefinedFunctions

+ getType(...)

+ registerType(...)
+ registerUnit(...)
+ getter

- name2function

+ registerPredefinedFunctions()
+ getFunction(...)
| + getter

Figure 3.11: The predefined subsystem: By utilizing the Symbol classes, a collection of
UnitType objects is created representing physical units. Together with prim-
itive data types, these units are encapsulated in type symbols and stored in
the PredefinedTypes collection, before being used in Predefined Variables and
PredefinedFunctions.

type represented by a type symbol and a list of parameter type symbols. A boolean field
indicates whether the corresponding function is predefined or not. In contrast to the
variable symbol, function symbols do not feature further specifications or characteristics,
e.g., the type of block in which they have been defined. Consequently, only a basic set of
data access operations is provided.

In order to initialize a basic collection of types, variables and symbols, the predefined
modules as illustrated in Figure 3.11 are used. All four types of the further on introduced
symbol collections ensure that a basic set of components is always available in processed
models. In the case of physical units, the units as provided by PyNestML represent a
functionally complete set, i.e., it is possible to derive arbitrary units by combining the
provided ones.

The PredefinedUnits class subsumes a routine used to initialize all basic physical units.
Figure 3.12 exemplifies how for each base unit, e.g., volt or newton, and each available
prefiz, e.g., milli or deci, a combined AstroPy unit is created and wrapped in an object of
the previously presented UnitType class. As opposed to variables which are only valid in
their corresponding models, units and types are not specific to a certain neuron context,
but valid for all possible models. Consequently, PyNestML stores all types globally for
all processed models. The PredefinedUnits class features operations to check whether a
given string represents a valid unit definition, e.g., ms, while the getUnit method is used
to retrieve the object representing a unit defined by the string. At runtime, often new
combinations of existing bases are derived. For instance, in the case of a multiplication of
two variables of type ms, it is necessary to derive and register a new unit ms?. While the
derivation of new units is delegated to the further on introduced visitors, the registerUnit
method can be used to insert a new unit into the type system. An encapsulation of
units in the UnitType instances and the storage in the PredefinedUnits collection makes

31

CHAPTER 3 THE MODEL-PROCESSING FRONTEND

units and prefixes |:> AstroPy units |:> encapsulated AstroPy units

UnitType km
AstroPyUnit km ntvp

| m, g, s, A, K, mol, cd, newton, T

2:3 + equals(...)
AstroPyUnit kg + printUnit(}

[k, M, 6T REZYdahdc. || AstroPyUnit km

Figure 3.12: Instantiation of SI units with AstroPy [ARTT13]: First, all basic units and
all available prefixes are collected in two separate lists. Then, for each unit
and each prelix, a combined unit is created, e.g., with the prefix kilo and
the unit gram, a new unit kg is initialized. Each created unit is represented
by an AstroPy unit object. For equality checks and printing operations, the
UnitType wrapper class is used around each AstroPy unit object.

maintenance and extensions easy to achieve: In the case that the given type system is
no longer applicable or a new alternative has been found, the corresponding UnitType
wrapper can be simply wrapped around a different library without affecting the remaining
framework.

Beside physical units, PyNestML is also able to store other types. As previously in-
troduced, primitive types are the second type of objects which have to be managed. For
this purpose, PyNestML subsumes physical units and primitive types in a single class,
namely the PredefinedTypes. In consequence, predelined types consist of type symbols
for the primitive types as well as all units stored in the PredefinedUnits class, cf. Fig-
ure 3.11. This separation has been employed in order to provide a central component for
the handling of predefined as well as collected types, while the unit system in the back-
ground remains an exchangeable component. For each unit stored in the PredefinedUnits,
PyNestML creates a new type symbol and stores it in the PredefinedTypes. Moreover, all
types are treated as singletons [VHJIG95], i.e., the system detects and prevents redundant
registration of a given type. Consequently, whenever the getType operation is called, only
a reference is returned. Only buffer and non-buffer type symbols are treated as individ-
ual instances due to their different handling in the generating backend. The handling of
types as singletons makes equality checks easy to achieve and reduces the overall memory
consumption during the model processing?. The PredefinedTypes class features a set of
operations used to get a type symbol or register a new one. The getType function includes
more elaborated processing. Physical unit objects which do not represent real units, e.g.,
in the case of ms/ms == 1, are detected and treated as being real typed. Each unit is
simplified before being registered in order to avoid a redundant storage of equal units,
e.g., ms == ms * ms/ms. In conclusion, this method represents the overall interface to
type systems and makes extensions by new primitive as well as unit types easy to achieve,
while the architecture remains modular. With the Predefined Types class all components
required to derive new types are already available in PyNestML, i.e., by combining basic
physical units the type system is able to deal with compound units.

Types are subsequently used in the Predefined Variables and PredefinedFunctions classes

2at the beginning there are roughly 600 different basic units in PyNestML

32

3.2 SYMBOL AND TYPING SYSTEM

to denote the types of the elements. The PredefinedVariables class stores all predefined
variables available in PyNestML. In its current state, PyNestML provides a set of prede-
fined variables often required in neuroscientific models, including the global time constant
t for the time past the start of the simulation, and Euler’s number e. Moreover, PyNest ML
features a concept for unit variables. Consequently, it is also possible to utilize the name
of a physical unit as a variable. By utilizing such a concept it is easily possible to state
expressions representing new, compounded units as part of a computation. For instance,
a given expression 55 x mV/nS is treated as semantically as well as syntactically correct.
By handling units as predefined variables, the framework is able to apply the same set of
arithmetic rules as for all other types of expressions, cf. chapter 9. Compound physical
units are therefore created by stating defining arithmetic expressions with basic units. All
units as defined in the PredefinedTypes class are therefore also registered as predefined
variables. However, in contrast to derived physical units which are automatically stored in
the set of predefined types, PyNestML does not add new unit variables to the predefined
variables. Such a handling is not required since complex arithmetic combinations of units
are treated as an aggregation of basic units, consequently, only variables for basic units
are required. The PredefinedVariables class features methods for the retrieval of symbols
for predefined variables as well as a getVariable method which can be used to detect if
a variable is predefined. In the case that a handed over name does not correspond to a
variable, none is returned. In this case, the client method has to take care of correct steps.
In contrast to types, variable symbols located in concrete models are never added to the
set of predefined ones given the fact, that these properties are local to their context and
should not be visible to other models. PyNestML reports declarations of variables with
the same name as one of the predefined variables as an error, cf. section 3.3.

Analogously to the Predefined Variables, PyNestML uses the PredefinedFunctions class
to store all predefined functions. In its current state, PyNestML supports 21 different
mathematical and neuroscientific functions. As already introduced, each function symbol
consist of a name, the type of the return value as well as a list of parameter types. All
predefined functions are therefore individually initialized and stored. In order to ensure
a correct type, type symbols managed by the PredefinedTypes class are retrieved and
references stored. The getFunction method can then be used to request the function
symbol for a specified name.

With a data structure for the representation of types as well as a basic collection of
fundamental types, PyNestML is now able to enrich the previously constructed AST by a
new property, namely the concrete type of all elements. For this purpose, all AST nodes
which have to be specified by a type are now, after the AST has been constructed by the
lexer and parser, extended by a reference to a TypeSymbol object. Based on the type of
AST node for which the type has to be derived, this step has been separated into two
different phases in order to enforce a clear separation of concerns. Figure 3.13 subsumes
the type derivation subsystem.

The simpler case is the handling of data type declarations of constants and variables
defined in the model. Given the grammar for the declaration of a type where no plus or
minus arithmetic operators are supported, this processing can be completely implemented
in a single method. This process is therefore encapsulated in the AST UnitType Visitor
class which derives the concrete type symbol of a type represented by an ASTDataType

33

CHAPTER 3 THE MODEL-PROCESSING FRONTEND

. CD
‘ ASTVisitor |<} -
[| Subvisitors
ASTUnitTypeVisitor ASTExpressionTypeVisitor
. ComparisonOperator StringLiteral
+ visitDatatype(...) + traverseSimpleExpression(...) UnaryVisitor Visitor Visitor
+ visitUnitType(...) + traverseExpression(...)
- handleUnit{... | PowVisitor || BinarylLogicVisitor || VariableVisitor |
I— | ParenthesesVisitor || ConditionVisitor || InfVisitor |
AST Classes | Numericliteral
| LogicalNotVisitor || FunctionCallVisitor || Visitor |
ASTDataType | BooleanlLiteral
v—— | DotOperatorVisitor || . || LineOperatorVisitor |
Visitor
| ASTExpression |

| ASTSimpleExpression

Figure 3.13: Overview of the type-deriving visitor subsystem: The AST UnitTypeVisitor
derives correct types for declarations of types as stored in ASTDataType
nodes, while the ASTFExpressionTypeVisitor class takes care of correct type
derivation in expressions. Here, a set of assisting sub-visitors is used to derive
the type symbol based on the concrete type of the expression, e.g., boolean
literals or arithmetic expressions, each of which corresponding to one produc-
tion of the expression grammar rule, cf. chapter 9.

node. The visitor extends the base visitor class, traverses the tree and invokes further
steps whenever an AST DataType node is detected. The visitAST DataType method checks
whether a primitive or a unit type is represented by the visited node.

In the case that a primitive type has been used, a respective type symbol is simply
retrieved from the predefined types collection and the reference stored. Otherwise the
handling is handed over to the visitA ST Unit Type subroutine. This method checks how the
data type has been constructed. If a simple name is used, e.g., mV, then the corresponding
symbol is retrieved from the predefined types and stored. Otherwise, the method proceeds
to recursively descend to the leaf nodes of the AST node, cf. Figure 3.14. As defined by
chapter 9, leaf nodes are always simple units or an integer typed value. The visitor checks
which type of operation has been used to combine the leaf nodes and proceeds accordingly.
For power expressions, e.g., ms?, first the type of the base is derived and consequently
extended by means of the power operation. Encapsulated units, e.g., (ms*nS), are updated
by setting the outer unit according to the inner one. In the case of arithmetic point
operators, the visitAST UnitType method first checks whether a division or multiplication
of units is performed. For the former, the left-hand side is first inspected for its type.
Given the fact that data types support a numeric value on the left-hand side, e.g., 1/ms,
the wvisitASTUnitType method checks whether it is a numeric type or not. If a numeric
value is used, the method retrieves and divides it by the right-hand side. In the case of
unit types, the procedure is applied recursively. Multiplication of two units is handled
analogously, although here the language does not provide a concept for numeric left-hand
side values.

34

3.2 SYMBOL AND TYPING SYSTEM

mV / (ms**2) 1. Decompose to
________ e leaves
d Kk
mV (msA 2) 2. Recombine to
H root
ms**2
A
ms

Figure 3.14: Derivation of types in ASTDataType nodes: First, the type defining expres-
sion is decomposed into its leaves. For each leaf, the corresponding type is
retrieved from the PredefiendTypes class. Finally, all types are recombined
according to the stated operations up to the root and the overall type is
stored.

In the case of expressions, it is necessary to propagate the types of the leaves to the
root of the AST node. This process requires a more sophisticated handling and traversal
of the expression. The complex structure of expressions where line-, point- as well other
operators can be used makes a modular structure necessary. The derivation of expression
types is therefore handled by the ASTFEzpressionTypeVisitor, cf. Figure 3.13. Extending
the base visitor, this class represents a traversal routine which, depending on the type of the
currently processed expression, invokes an appropriate sub-visitor. The currently active
sub-visitor is referenced in the real self attribute and indicates how parts of the expressions
have to be handled. It consequently checks the type of an element in the expression, e.g.,
whether it is a boolean literal or an arithmetic combination of two subexpressions, and sets
the real self visitor according to this element. In its current state, PyNestML supports
15 different sub-visitors, amongst others the unary visitor used to update the expression
prefixed with a unary plus, minus or tilde, the power visitor for the calculation of the type
of an exponent expression, the parentheses visitor for the type derivation of encapsulated
expressions, the logical not visitor for the handling of negated logical expressions, the dot
and line operators for handling of arithmetical expressions, the comparison visitor for
handling of comparisons and the binary logic visitor for the handling of logical and and
or.

The use case demonstrated in Figure 3.15 exemplifies the overall process: Given the
expression 10mV + V_m + (true and false) with the variable V_m of unit type millivolt,
first, the ASTEzpressionType Visitor descends to the leaf level, namely the nodes 10mV,
V_m, true and false. For 10mV, the numeric literal visitor is activated which checks
whether the expression utilizes a physical unit or not. In the case that a unit is used,
the visitor resolves the name of the unit and sets the retrieved type symbol to the type
of the node. If no unit is used, the visitor checks whether a real or integer literal is
present and retrieves the corresponding type symbol from the predefined types collection.
Analogously, the V_m variable is inspected by the variable visitor, and the variable name
is resolved to the corresponding variable symbol. Each variable symbol stores a reference
to its type symbol. Consequently, this type symbol is retrieved and used as the type of
the literal in the expression, e.g., here the type mV. For the boolean true and false, the

35

CHAPTER 3 THE MODEL-PROCESSING FRONTEND

10mV + V_m + (true and false) Error: Addition of boolean and mV.
mV | 10mV+V_m (true and false) [boolean
”—’/\“~~~ 4\
mV| 10mV V.m [mV true and false |boolean
P AN
boolean| true false |boolean

Figure 3.15: Derivation of types in ASTFEzpression nodes: Analogously to ASTDataTypes
nodes, an expression is first decomposed into its leaf nodes. Subsequently,
the corresponding variable symbol is resolved, and its type symbol retrieved.
Type symbols are combined according to the operations used to construct the
expressions. In the case of errors, e.g., a combination of boolean and numeric
types, an error message is propagated to the root.

boolean wisitor is used. It simply inspects whether a boolean literal has been used and
sets the type of the corresponding expression to the boolean type symbol as stored in
the predefined types collection. Having the types of all leaf nodes, the visitor starts to
ascend. The expression 10mV +V_m is a line operator combination of two values, thus the
line operator visitor is activated. The arithmetic plus operator should only be applicable
for numeric values and variables representing such. The left- as well as the right-hand
side of the plus operator refer to unit values and have the same type, hence the overall
type of the expression is set to mV. In the case of true and false, the and operator can
only be used to combine boolean values, which applies in the given case, thus the binary
logic visitor is used which updates the type of the combined expression to boolean. The
boolean expression has been encapsulated in parentheses which makes an invocation of
the parentheses visitor necessary. This visitor simply retrieves the type of the inner part
of the encapsulated expression and updates the type of the overall expression accordingly,
e.g., in our case to boolean. Finally, the root of the expression is reached, namely the
arithmetic combination of the expressions 10mV 4+ V_m of type mV and (true and false)
of type boolean. Obviously, such an expression is not correctly typed. The line operator
visitor detects that incompatible types have been used and sets the type of the expression
to an error value. In order to enable the PyNestML to store either a correct type or
an error message, the Fither class is used. This class stores either a reference to a type
symbol or a string containing an error message. By storing an object of this type instead
of an undefined unit, PyNestML is able to derive and interact with errors and propagate
the messages to the root of the expression. All detected errors are hereby reported as
being of semantical nature, cf. section 3.3. In the given example, the overall type of
the expression is an object of the Fither class with an error message stating that an
arithmetic combination of numeric and non-numeric values is not possible. Together with
all remaining visitors, this system is able to derive the type of arbitrary expressions by
propagating and combining leaf-node types to the root. Here we see exactly why the
physical unit system AstroPy with its support for arithmetic operators was used: Given

36

3.3 SEMANTICAL CHECKS

-
ASTVisitor ModelParser
/\
ASTSymbolTableVisitor SymbolTable CoCosManager CoCo
- hame2neuronScope + postSymbolTableBuiderChecks(...) + CheekCoCo(_“)
- currentBIockType Y P + postOdeSpecifcationChecks(...) A
+ updateSymbolTable(...) + initializeSymbolTable() + checkExpressionCorrect{...)
+ visit{ASTNode}(...) + addNeuronScope(...)]
+ deleteNeuronScope(...)
+ printSymbolTable(...) Concrete CoCos
*
AST Classes Scope
- enclosingScope
- declaredElements
Symbols - scopeType
A |- sourcePosition 1
+ addSymbol(...)
+ addScope(...)

+ resolveToSymbol(...)

Figure 3.16: Overview of semantical checks: The orchestrating ModelParser class utilizes
the ASTSymbolTableVisitor to construct a model’s hierarchy of Scope ob-
jects. Each scope is populated by Symbol objects corresponding to elements
defined in the respective model. In order to manage all processed neurons in a
central unit, the SymbolTable class is used. Finally, the ModelParser calls all
model-analyzing routines of the CoCosManager class and checks the model
for semantical correctness. The CoCosManager class utilizes different CoCos
to check several properties of the given model.

the expression 10mV * 2ms, PyNestML should be able to combine the underlying units
to a new one, and the overall type of the expression should be set to mV * ms. Such a
processing is vehemently simplified if the framework’s underlying physical units library
supports arithmetic operations on units for the creation of new ones.

This section introduced the type system and showed how PyNestML stores and processes
declarations and their respective types. Here, we first implemented data structures to
store details of defined elements in the model. Subsequently, we demonstrated how a set
of predefined elements is initialized by the predefined subsystem. Finally, these elements
were used to derive the type of all expressions located in the model by means of the
ASTDataTypeVisitor and ASTExpressionType Visitor classes. We will come back to types
in the next section where correct typing of expressions as well as other semantical properties
are introduced.

3.3 Semantical Checks

After the AST of a given model has been constructed, comments have been collected
and the type of all elements derived, the model-processing frontend proceeds to the last
step, namely the checking of the semantical correctness of a handed over textual model.
For this purpose, we first implement data structures for the storage of a neuron’s concrete

37

CHAPTER 3 THE MODEL-PROCESSING FRONTEND

context, namely the SymbolTable and Scopes classes. In order to fill these components with
context information, a collecting process implemented in the ASTSymbolTable Visitor is
used. After the context of a model has been established, it remains to check for correct
semantics. This task is delegated to the CoCosManager, a component which manages a
collection of context conditions, cf. section 2.1. Figure 3.16 illustrates which components
have been implemented to store, collect and check semantical details of a model.

The SymbolTable class has been implemented analogously to the concept introduced in
section 2.1. This component represents a container which maps neuron names to their
respective global scope. The scope of an AST object is hereby an element of the Scope
class which stores a reference to its parent scope, leading to a tree-like structure of the
scope layering. Utilizing such a structure accelerates the resolving of symbols and eases
the working with the context of a model. All elements contained in a scope are hereby
stored in a list. Each element is either a Symbol or a sub-Scope. The final two attributes
of the Scope class store details regarding the type of the scope and the source location.
The former is used to enable an easy to conduct filtering of scopes. For this purpose the
enumeration type ScopeType is implemented. Each scope is marked as being global, update
or function. All elements defined outside the update and function block are stored in a
neuron’s top-level scope, while the update and function block can be used to open new
sub-scopes. The source location attribute contains the position enclosed by the scope.
Storing this detail is beneficial especially in the case of error reports and troubleshooting
of textual models.

Besides data retrieval and manipulation operations, the Scope class features several aid-
ing methods: The getSymbolsinThisScope method can be used to retrieve all symbols in
the current scope, while getSymbolsinCompleteScope also takes all shadowed symbols in
ancestor scopes into account. The getScopes operation can be used to return all sub-scope
objects of the current scope. In order to retrieve the top scope of a neuron, the getGlob-
alScope method can be used. Finally, the resolve methods are provided. The Scope class
implements two different operations and supports a more precise retrieval of information.
The resolveToAllScopes method can be used to retrieve all scopes in which a symbol with
the handed over name and symbol kind has been declared. The resolveToAllSymbols re-
turns the corresponding symbols. These methods can be used whenever shadowing of
variables should be handled and all specified symbols returned. The respective single in-
stance methods resolve ToScope and resolve ToSymbol can be used to return the first defined
instance of a symbol specified by the parameters. Starting from the current scope, these
methods first check if the specified symbol is contained in the scope. If such a symbol
is found, it is simply returned, otherwise, the same operation is performed on the parent
scope. In conclusion, this method can be used to check if a used element has been declared
in the spanned scope of the current block. Figure 3.17 illustrates the resolution process.

The SymbolTable class represents a data structure which has to be instantiated and
filled with the context information of concrete models. PyNestML delegates this task to
the ASTSymbolTableVisitor class, a component which implements all required steps to
fill the symbol table with life. The overall interface of this class consists of the static
updateSymbolTable method which expects the concrete AST whose context shall be ana-
lyzed and updated accordingly. Based on the visited node, this operation invokes one of
the following processings: In the case that an ASTNeuron node is visited, a new neuron

38

3.3 SEMANTICAL CHECKS

Neuron Scope:

OO

Local Scope:

OlO

—— > [found] return Symbol(‘V’)

[not found]

get parent scope

resolve ‘V’
[not found]
get parent scope
resolve ‘V’

Local Scope:

©

<«—— resolve ‘V’

Figure 3.17: The symbol resolution process: The request to return a Symbol object cor-
responding to a given name is received by the nested scope. The scope is
checked, and if no symbol with the corresponding name and type is found, a
recursive call to the resolution process on the nesting scope is performed. If
a symbol has been found, it is returned, otherwise an error is indicated by

returning none.

ASTNeuron

V

————

update scope »

ASTBlock

S
>

e /\

-

---neuron model —> create neuron scope

N
) update scope

~_update scope
y

element declared_ - - - _ >
—> create new symbol

ASTDeclaration

ASTDeclaration |<----- element declared

S —> create new symbol

)

]
/ update scope

ASTExpression b

update scope _. -~
Ld

~—— \update scope

ASTSimpleExpression

ASTSimpleExpression

Figure 3.18: AST context-collecting and updating process: Starting at the root, i.e., the
ASTNeuron object, the ASTSymbolTableVisitor creates a neuron-specific
scope and descends into the AST. For each node, the routine checks if a child
node is stored, and updates its scope according to the current one. Found
declarations are used to create new symbols which are consequently stored in

the parent’s scope.

39

CHAPTER 3 THE MODEL-PROCESSING FRONTEND

wide scope is created. Moreover, in order to fill the scope with predefined properties which
are always available in the context, references to elements of the predefined subsystem are
stored. This step ensures that the resolution process of predefined and model-specific
variables becomes transparent and accessible over the neuron’s scope. It is therefore not
required to access individual collections of the predefiend subsystem to get the respective
elements. Instead, all symbols required by a model are stored in its respective top-level
scope and the Predefined Types collection. Moreover, given the structure of the visitor, it
is not directly possible to indicate certain details to processed child nodes, e.g., the top
level scope of the currently handled neuron or which type of block® is processed. While
the former is solved by a top-down update process as illustrated in Figure 3.18, i.e., before
a node is visited, its scope is updated to the parent’s scope, the latter requires storage of
additional details. Consequently, the type of the currently processed block is stored and
represented as a value of the BlockType enumeration, cf. section 3.2. Whenever a block of
statements is entered, the type of the block is simply stored and removed after the block
has been left. Newly created symbols inside the block check this value and derive the
information in which type of block they were created. Such a processing is required in
order to determine the ScopeType of each created (sub-)scope as well as the BlockType of
created symbols?.

The creation of new symbols and scopes is only required in a limited set of cases. Most
often, only the scope reference of a handled element has to be updated. As shown in
Figure 3.18, this step is done in a reversed order: The neuron’s root AST node stores a
reference to its scope, and subsequently sets the scope of its child nodes to the parent
scope. In the case that a block is detected which has to span its own local scope, i.e., an
update or function block, a new Scope object is created and stored in the parent scope.
This new object is then set as the scope of the nested block and the process is continued
recursively. Thus, whenever a scope-spanning block is detected, a new scope is stored in
the parent scope, and used in the following as the current scope. The individual wisit
methods of the ASTSymbolTableVisitor therefore first update the scopes of their child
nodes before a further traversal is invoked. Constants and variables declared in the model
require an additional step. Here it is necessary to create a new Symbol object representing
the declared element. Concrete information regarding the specifications of the symbol is
stored in the current AST object, while the TypeSymbol can be easily retrieved by in-
specting the ASTDataType child node. Here we see exactly why a preprocessing by the
ASTDataType Visitor, cf. section 3.2, is required. Having an AST where all nodes have
been provided with their respective TypeSymbols, the ASTSymbolTableVisitor can now
easily retrieve this information and use it in VariableSymbols. All required details are
therefore simply retrieved from the corresponding element, and a new VariableSymbol is
created and stored in the current scope. In the case of user-defined functions, this process
is performed analogously, although here a FunctionSymbol is created. The ASTSymbol-
TableVisitor executes this process for the whole AST and populates the symbol table with
scope details. As a side effect, the scopes of all AST objects are updated correctly and
can now be used for further checks.

After a neuron’s scopes have been adjusted, the final step of the model-processing fron-

3state, function, equations etc.
4a detail required for appropriate code generation, cf. section 3.2

40

3.3 SEMANTICAL CHECKS

CoCosManager CoCo
+ postSymbolTableBuilderChecks(...) + checkCoCo(...)
+ postOdeSpecificationChecks(...} ZP
+ checkExpressionCorrect(...)
CoCoAllVariablesDefined

CoCoBufferNotAssigned

CoCoFunctionsHaveRhs

Figure 3.19: The CoCosManager and context conditions: The CoCosManager class rep-
resents a central unit which executes all required checks on the handed over
model. Each checked feature of the model is encapsulated by a single class
which inherits the abstract CoCo class.

tend is invoked, namely the checking of semantical correctness. As demonstrated in sec-
tion 2.1, this steps is performed by means of so-called context conditions. Here a modular
structure has been employed. PyNestML implements each context condition as an individ-
ual class with the prefix CoCo and a meaningful name, e.g., CocoVariableOncePerScope.
In order to subsume the overall checking routine in a single component, the CoCosManger
class has been implemented, cf. Figure 3.19. Its postSymbolTable BuilderChecks method
can be used to check all context conditions after the symbol table has been constructed,
while the postOdeSpecificationChecks method checks if all ODE declarations have been
correctly stated in the raw AST.

Given the fact that context conditions have the commonality of checking the context of a
neuron model, PyNestML implements the abstract CoCo super class. All concrete context
conditions therefore have to implement the checkCoCo operation which expects a single
AST for checking. Concrete context condition classes describe in a self-contained manner
which definitions lead to an erroneous model. Consequently, here a black list concept is
applied: For models which feature certain characteristics it is not possible to generate
correct results. These characteristics should be reported. In its current state, PyNestML
features 25 different context conditions which ensure the overall correct structure of a
given model. The following composition outlines the implemented conditions.

1. CoCoAllVariablesDefined: Checks whether all used variables are previously defined
and no recursive declaration is stated.

2. CoCoBufferNotAssigned: Checks that no values are assigned to (read-only) buffers.

3. CoCoConvolveCondCorrectlyBuilt: Checks that each convolve function-call is pro-
vided with correct arguments, namely a shape and a buffer.

4. CoCoCorrectNumeratorOfUnit: Checks that the numerator of a unit type is equal
to one, e.g., 1/mv.

41

CHAPTER 3 THE MODEL-PROCESSING FRONTEND

10.

11.

12.

13.

14.

15.

16.

17.

17.

18.

19.

42

CoCoCorrectOrderInEquation: Checks whether a differential equation has been stated
for a non-derivative, e.g., V,,, =V, instead of V|, =V, .

CoCoClurrentBuffersNotSpecified: Checks that current buffers are not specified with
the keyword inhibitory or excitatory. Only spike buffers can be further specified.

CoCoFachBlockUniqueAndDefined: Checks that mandatory update, input and out-
put blocks are defined exactly once, and all remaining types of blocks are defined at
most once.

CoCoFEquationsOnlyForInit Values: Checks that equations are only defined for vari-
ables stated in the initial values block.

CoCoFunctionCallsConsistent: Checks that all function calls are consistent, i.e., that
the called function exists and the arguments are of the correct type and amount.

CoCoFunctionHasRhs: Checks that all attributes marked by the function keyword
have a right-hand side expression.

CoCoFunctionMaxOneLhs: Checks that multi-declarations marked as functions do
not occur, e.g., function Vy,,V, mV = Vi + 42mV. Several aliases to the same
value are redundant.

CoCoFunctionUnique: Checks that all functions are unique, thus user-defined func-
tions do not redeclare predefined ones.

CoColllegalExpression: Checks that all expressions are typed according to the left-
hand side variable, or are at least castable to each other.

CoColInitVars WithOdesProvided: Checks that all variables declared in the initial
values block are provided with the corresponding ODEs.

CoColnvariantlsBoolean: Checks that the type of all given invariants is boolean.

CoCoNeuronNameUnique: Checks that no name collisions of neurons occur. Here,
only the names in the same artifact are checked.

CoCoNoNestNameSpaceCollision: Checks that user-defined functions and attributes
do not collide with the namespace of the target simulator platform NEST.

CoCoNoShapesEzceptinConvolve: Checks that variables marked as shapes are only
used in the convolve function call.

CoCoNoTwoNeuronsInSetOfCompilationUnits: Checks across several compilation
units (and therefore artifacts) whether neurons are redeclared. Only invoked when
several artifacts are given.

CoCoOnlySpikeBuffer WithDatatypes: Checks that only spike buffers have been pro-
vided with a data type. Current buffers are always of type pA.

3.3 SEMANTICAL CHECKS

20. CoCoParametersAssignedOnlyInParameterBlock: Checks that values are assigned
to parameters only in the parameter block.

21. CoCoSumHasCorrectParameter: Checks that convolve calls are not provided with
complex expressions, but only variables.

22. CoCoTypeOfBufferUnique: Checks that no keyword is stated twice in an input buffer
declaration, e.g., inhibitory inhibitory spike.

23. CoCoUserDeclaredFunctionCorrectlyDefined: Checks that user-defined functions are
correctly defined, i.e., only parameters of the function are used, and the return type
is correctly stated.

24. CoCoVariableOncePerScope: Checks that each variable is defined at most once per
scope, i.e., no variable is redefined.

25. CoCoVectorVariableInNon VectorDeclaration: Checks that vector and scalar vari-
ables are not combined, e.g. V 4+ V_vec where V is scalar and V_vec a vector.

In the following we exemplify the underlying process on two concrete context conditions,
namely CoCoFunctionUnique and CoColllegalExpression. The former is used to check
whether an existing function has been redefined in a given model. With the previously
done work, this property can be easily implemented: Given the fact that in the basic
context of the language no functions are defined twice, the checkCoco method of the
CoCoFunctionUnique class simply retrieves all user-defined functions, resolves them to the
corresponding FunctionSymbols as constructed by the ASTSymbolTableVisitor and checks
pairwise whether two functions with the same name exist. In order to preserve a simple
structure of PyNestML, function overloading is not included as an applicable concept.
Thus, only collisions of function names have to be detected. If a collision has been detected,
an error message is printed and stored by means of the further on introduced Logger
class, cf. section 3.4. With the names of all defined FunctionSymbols (and analogously
VariableSymbols) it is easily possible to check whether a redeclaration occurred. Moreover,
the stored reference to the corresponding AST node can be used to print the position at
which the model is not correct, making troubleshooting possible. Figure 3.20 illustrates
the CoCoFunctionUnique class.

The second exemplified context condition CoColllegalFExpression checks whether the
expected data type of elements and their corresponding expressions have the same value.
With the previously derived TypeSymbols of all AST nodes and the instantiated symbol
table, here a simple process becomes sufficient for an in-depth checking of correctly typed
models. To check correct typing of all required components, the assisting CorrectExpres-
sion Visitor is implemented, cf. Figure 3.20. This visitor implements the basic AST Visitor
and overrides the wvisit method for nodes whose types have to be checked. In the case of
declarations and assignments, it resolves the variable symbol of the left-hand side variable
and retrieves the corresponding type symbol. For the right-hand side expression, the get-
TypeEither of the (simple) expression object is called. Finally, the equal method is used to
check whether both types are equivalent. Here, an additional check has been implemented:
Given the fact that most simulators disregard physical units, but work in terms of integers

43

CHAPTER 3 THE MODEL-PROCESSING FRONTEND

CoCoFunctionUnique CoColllegalExpression

+ checkCoCo(...) + checkCoCo(...) ASTVisitor

AST Classes CorrectExpressionVisitor

ASTNeuron + visitASTDeclaration(...)
+ visitASTAssignment(...)
ASTDeclaration + visitASTIfClause(...)

Figure 3.20: Simple and complex context conditions: Simple context conditions such as
CoCoFunctionUnique can be implemented in a single function, while more
complex conditions such as CoColllegalExpression also utilize additional
classes and visitors. Both types of context conditions work on the handed
over AST.

and doubles, it can be beneficial to allow certain implicit castings. For this purpose the
isCastableTo method of the further on introduced ASTUtils class is used. This function
can be invoked to check whether one given type can be converted to a different one. For
instance, this method returns true whenever a physical unit TypeSymbol and a real Type-
Symbol are handed over, since each unit typed value is implicitly regard as being of type
real. Analogously, real and integer can be casted to each other, although here the fraction
of a value might be lost. An implicit cast is always reported with a warning to inform the
user of potential errors in the simulation. If an implicit cast is not possible, e.g., casting of
a string to an integer, an error message is printed informing the user of a broken context.
Warnings, therefore, state that a given model could possibly contain unintended behavior,
while errors indicate semantical incorrectness.

The second type of checks as implemented in the CoColllegalEzpression is a comparison
of magnitudes: Values which utilize the same physical unit but differ in magnitude have
to be regarded as being combinable. It should, therefore, be possible to add up 1mV
and 1V, although the underlying combination of a prefix and unit is not equal. This task
is handed over to the differsInMagnitude method of the ASTUtils class, cf. section 3.4.
This method simply checks whether the physical units without the prefixes are equal and
returns the corresponding truth value. The remaining context conditions are implemented
in an analogous manner: If complex checks on all nodes of the AST are required, a new
visitor is implemented. In more simple cases a single function is sufficient. Errors and
warnings are reported by means of the Logger class, cf. section 3.4.

In this section, we introduced how context related details of a model can be stored and
checked. For this purpose, we first implemented the SymbolTable class which stores refer-
ences to all processed neuron scopes. The Scope class has hereby been used to represent
scope spanning blocks which are then populated by sub-scopes and symbols. In order to in-
stantiate a model’s scope hierarchy, the ASTSymbolTable Visitor was introduced. Finally,
the constructed symbol table was used to check the context of the handed over model for
correctness. Here, the orchestrating CoCosManager class delegated all required checks to
individual context condition classes, with the result being an AST which has been tested

44

3.4 ASSISTING CLASSES

for semantical correctness.

3.4 Assisting Classes

As opposed to the introduction of a typical DSL architecture in chapter 2, where semanti-
cal checks, as well as model transformations, were seen as a part of the function library, we
decided to follow a different approach during the reengineering of NestML. In the previous
section, checks for semantical correctness of a given model were already included in the
model-processing frontend instead of characterizing this component as an element of the
subsystem sitting between the frontend and the code generator. However, the architecture
as introduced in Figure 2.2 represents a recommendation and can be adjusted to individ-
ual use cases. We, therefore, decided to factor out the functionality normally contained
in the function library and instead delegate these components to the model-processing
frontend and the generating backend. The result of the frontend should, therefore, be an
AST representation of the model which has been checked for semantical and syntactical
correctness. Moreover, model transformations are most often of target-platform specific
nature, i.e., whenever several target platforms are implemented, it may be necessary to
implement several model transformations. As illustrated in Figure 3.21, it is beneficial
to regard model transformations as a part of the target-format generating backend and
encapsulate all components required for a specific target in a single subsystem. Follow-
ing these principles, the overall PyNestML architecture has been implemented slightly
different as presented in chapter 2: A rich and powerful frontend is followed by a small
collection of workflow governing and assisting components, which are in turn concluded
by several, independent code generators. In this section we will introduce components
sitting in between and governing the overall model-processing control flow and providing
assisting functionality. Although not crucial, these elements are often required to provide
a straightforward tooling as well as certain quality standards.

As introduced in the previous section, the ModelParser class reads in and checks a tex-
tual model for syntactical and semantical correctness. However, transforming the model to
an equivalent AST is only the first step in the overall processing. Figure 2.2 showed which
other steps have to follow and therefore to be chained and governed by an orchestrating
component. This task is handled by the PyNestMLFrontend class, a component which
represents the workflow execution unit and hides the model transforming process behind
a clearly defined interface.

Before the actual processing of the model can be started, it is necessary to handle all
parameters as handed over by the user, e.g., the path to the models. These parameters
tend to change frequently whenever new concepts and specifications are added. PyNestML
therefore delegates the task of arguments handling to the FrontendConfiguration class. By
utilizing the standard functionality of Python’s argparse® module, the frontend configu-
ration is able to declare which arguments the overall system accepts, cf. chapter 7. The
handed over parameters are stored in respective attributes and can be retrieved by the cor-
responding data access operations. All attributes and operations are hereby static (class
properties) and can be accessed from the overall framework by simply interacting with the

Shttps://docs.python.org/3/library /argparse.html

45

CHAPTER 3 THE MODEL-PROCESSING FRONTEND

]
PyNestML ASTHigherOrder

Frontend Visitor A Backend NEST
- | A
Model-processing] Frontend F/____)5 Backend :
Frontend Configuration Messages ‘\“ ihSpiNNa_k_e_r_““_i
ASTUtils \‘\ R S ——
'y Backend :
| ASTNodeFactory | | ASTOdeTransformer| ' NEURON :

Figure 3.21: Overview of assisting components: The PyNestMLFrontend represents an or-
chestrating component, governing PyNestML’s workflow. Parameters handed
over by the user are stored in the FrontendConfiguration, while the Logger
and Messages classes take care of logging. For the modification and creation
of ASTs, the ASTUtils, ASTNodeFactory and ASTOdeTransformer are em-
ployed. The ASTHigherOrderVisitor represents an assisting component mak-
ing traversal and modification of ASTs easier.

[wrong parameters]
report prc?blem && [(no model correct
terminate | | dry mod) && no log]
terminate
[(no model correct 7 ~
. Checking for] | | dry mod) && store log .
‘—)[Parsing Arguments] [Semantical Correctness J Zenerate oz Printing Log
\. 7
setup check [store log]
PyNestML correctness store log to file
[at least one model correct /- ™\
Initializing . && not dry mod] . [no log]
[Predefined Subsystem Parsing Models aenerate target Generating Targets [termmate

| S

Figure 3.22: The model-processing routine as orchestrated by the PyNestMLFrontend.

class. Whenever new parameters have to be implemented, it is only necessary to extend
the existing FrontendConfiguration class with a new attribute and access operation, while
the remaining framework remains untouched.

All arguments as handed over to the PyNestMLFrontend class are therefore first del-
egated to the FrontendConfiguration class where all settings are parsed. Only if a valid
set of arguments is available, the system proceeds. First, the predefined subsystem of the
previous section is initialized. Subsequently, the ModelParser class and its parseModel
method are used to parse the model. This process is executed for all handed over arti-
facts, with the result being a collection of neuron models represented by ASTs. After all
models have been parsed, it remains to check a context condition which is only available
whenever several artifacts are processed, namely CoCoNoTwoNeuronsInSetOfCompilatio-
nUnits. PyNestML checks in the list of all processed artifacts whether two neurons with
equal names are present. Although not directly semantically incorrect, this property still
has to be ensured. Otherwise, a generated C++ implementation of the respective neuron
would overwrite a different one, leading to unexpected results. The corresponding context

46

3.4 ASSISTING CLASSES

condition is hereby directly invoked on the CoCosManager, cf. section 3.3. All errors are
reported and logged by means of the Logger class. If the developer mode is off, PyNestML
inspects the log and removes all neurons from the current collection which have at least
one found error. The adjusted collection is then handed over to the code generating back-
end. After all models have been processed, the overall log is inspected and stored in a
file if required. In conclusion, the PyNestMLFrontend class represents the overall work-
flow execution unit, cf. section 2.1, and combines the model-processing frontend and the
code-generating backend. Figure 3.22 subsumes the presented procedure.

The Logger represents an assisting class which is used in almost all parts of the PyNestML
framework. Errors during the parsing and semantical checks as well as all complications
arising in the code generators are reported by means of this component. Often identical
errors can occur in several parts of the toolchain, e.g., an underivable type in the expres-
sion and data-type processing visitors. Whenever these messages have to be adjusted, it
is necessary to locate all occurrences and adjust equally in order to preserve consistency.
The implementation tackles this problem by storing all messages in a single unit, namely
the Messages class as shown in Figure 3.23. Each message is encapsulated in a private field
and can not be directly accessed. Instead, a corresponding getter is used. Consequently,
all messages can be changed while the interface remains unaffected. Moreover, the Mes-
sages class implements an additional feature which makes specific filtering of messages
easier to achieve. In order to avoid direct interactions with message strings, each message
is returned as a tuple consisting of a string and the corresponding message code. The
message code is hereby an element of the MessageCode enumeration type which provides
a wide range of message and error codes. Whenever a getter method of the Message class
is invoked, a tuple of a message and the corresponding code is returned. Each reported
issue can, therefore, be identified by its error code, making filtering of messages by their
type or logging level possible.

The Message class makes reporting of errors easy to achieve and maintain. The actual
printing and storing of reported issues is delegated to the Logger class, where all messages
are stored together with several qualifying characteristics. In order to filter out messages
which are not relevant according to the user, a logging level can be set. Messages whose
logging level is beneath the stored one are not printed to the screen but may be stored
in the optionally generated log file. In order to associate a message with its origin, i.e.,
the neuron model where the corresponding error occurred, a reference to the currently
processed neuron is stored. All messages can therefore also be filtered by their origin.

The corresponding set of operations on the logger represents a complete interface for
the storing, printing and filtering of messages. The logMessage method inserts a new
message into the log and expects the above-mentioned tuple. The getAllMessagesOfLevel
method returns all messages of a specified logging level, while getAllMessagesOfNeuron
returns all issues reported for a specific neuron model. The hasFErrors method checks
whether a neuron does or does not contain errors. The final operation of this class is
the printToJSON method. As introduced in the PyNestMLFrontend class, it is possible
to store the overall log in a single file. For this purpose, first, it is necessary to create
a sufficient representation of the log in JSON format. This task is handed over to the
aforementioned method, which inspects the log and returns a corresponding JSON string
representation. In conclusion, all methods of this class represent an ideal interface for a

47

CHAPTER 3 THE MODEL-PROCESSING FRONTEND

Logger
- log
- currentMessage
- loggingLevel
- currentNeuron
+ logMessage(...) Messages
+ getAllMessagesOflevel(...) + getStartedProcessingFile(...)
+ getAllMessagesOfNeuron(...) + getNewTypeRegistered(...)

+ printToJSON() + getStartBuildingSymbolTable(...)
<<enumeration>> <<enumeration>>
LoggingLevel MessageCode

INFO START_PROCESSING_FILE
WARNING TYPE_REGISTERED

ERROR START_SYMBOL_TABLE_BUILDING
NO

Figure 3.23: The logger and messages components: The Logger provides methods for re-
porting issues (logMessage) and precise retrieval of messages (e.g., getAllMes-
sagesOfLevel). For a log in file format, the printToJson method can be used.
In order to make maintenance more focused, all message strings are encap-
sulated in the Messages class. The currently set logging level, as well as
individual message codes, are hereby of an enumeration type.

troubleshooting and monitoring of textual models.

The ASTNodeFactory class implements the factory pattern [Gam95] and provides a
set of methods used to initialize new AST nodes, while the ASTUtils class represents a
rather broad collection of operations required across the overall framework. In the case
of the latter, especially two methods are of interest: The isCastableTo method returns
whether a type X can be casted to a type Y, ensuring that the types of both sides of a
given declaration or assignment in the model are equal or at least castable into each other.
The differsInMagnitude method, on the other hand, returns whether two types represent
the same physical unit and only differ in the magnitude. As introduced in section 3.3,
both operations are required to ensure that models are regarded as being correct although
containing minor typing differences.

Transformations which are especially focused on the equations block and its definition of
differential equations are contained in the ASTOdeTransformer class. Although solely used
by transformations contained in the code-generating backend, this class has been decoupled
and represents a self-contained unit. Independently of the concrete target platform for code
generation, it is often necessary to modify all ODEs in a given model. This class provides
a collection of operations for the data retrieval from and manipulation of ODEs. The
getter functions collect function calls contained in all declared ODEs. The corresponding
manipulation operations are marked by the prefix replace and can be used to replace
certain parts of an ODE by other specifications. Although these operations could also be
included in the ASTUtils class given their nature of manipulating an AST, for a clearer
separation of concerns all operations on the ODE block have been delegated to a single

48

3.4 ASSISTING CLASSES

)

ASTOdeTransformer

ASTNodeFactory

ASTUtils

- functions
- sumFunctions

+ replaceFunctions(...)
+ replaceSumCalls(...)
+ getFunctionCalls(...)

+ createASTInternalBlock(...)

+ createASTStateBlock(...)

+ createASTInitialValuesBlock(...)
+ createASTStatement(...)

+ createASTDeclaration(.
+ createASTAssignment(.

)
)

+ getAllINeurons(...)
+isSmallStmt(...)
+isCompoundStmt(...)
+ isSpikelnput(...)
+isCurrentinput(...)

+ isCastableTo(...)

+ getSumFunctionCall(...) + differsinMagnitude(...)

Figure 3.24: AST-manipulating modules: The ASTOdeTransformer implements a set of
operations focused on the retrieval of information from and modifications of
the ODE block. The ASTNodeFactory offers operations for the creation of
AST nodes, while ASTUtils contains a vast collection of operations on the

AST.

unit. As presented in chapter 4, it is often necessary to adjust a given equations block
and transform a set of expressions. By encapsulating all operations in a unit, a clear
single responsibility and therefore maintainability is achieved. Figure 3.24 summarizes the
provided functionality of the ASTOdeTransformer.

We conclude this section by an introduction of the higher-order visitor, a concept which
has been implemented to reduce the amount of code and effort required to interact and
modify a given AST. Although highly applicable, this approach can only be employed in
programming languages where functions and operations are regarded as objects and can
therefore be handed over as parameters to other functions. Luckily, this applies to Python
and its concept of duck-typing.

Section 2.1 illustrated that it is often necessary to perform a set of operations on certain
types of nodes in a given AST, e.g., whenever all function calls with a specific name and
arguments have to be collected. The visitor pattern [RH17] provides a possible approach
for an implementation of such procedures, where concrete operations and the visiting order
are decoupled, cf. Figure 3.25. If one or the other routine has to be modified, the user can
simply override the corresponding operation. However, visitors which implement simple
operations still require an extension of the base class, making the hierarchy of classes less
comprehensible and cluttered. Moreover, in the case that two visitors have to be combined
to a single one, it is not directly possible to mix them, but required to implement a new
visitor containing both. All this leads to a situation, where maintenance of components
is not focused, but distributed over a hierarchy of visitors and their assisting operations,
blowing up the code base with unnecessary code and repetitive definitions of new classes.

Especially in the case of PyNestML and its semantics-checking subsystem many visitors
had to be written. In order to avoid the above-mentioned problems, the concept of the
higher-order visitor was developed. Analogously to the (generated) base visitor, this class
implements a traversal routine on the AST. However, instead of overriding the base visitor
and providing all operations on the AST in a new class, it is only required to hand over
a reference to the operation which should be performed on the AST. Coming back to
the introductory example: Here, it is only necessary to check whether a node represents
a function call, and which arguments it has. Both operations can be stored in a single

49

CHAPTER 3 THE MODEL-PROCESSING FRONTEND

ASTVisitor

+ visit(...)
+ traverse(...)
+ enduvisit(...)

+ visitASTNeuron(...) 1# ASTVarsCollectorVisitor.py Python
2 def visitASTVariable(self, node):
3 globalvariableList.append(node.getVariableName())
L\ 4

ASTVarsCollectorVisitor
+ visitASTVariable(...)

Figure 3.25: The wisitor pattern in practice [KRV10]: Even small operations, e.g., the
collection of certain types of variables, require the usage of sub-classing, where
only a single operation is redefined.

function definition. The higher-order visitor therefore expects such a function reference,
traverses the AST and invokes the operation on each node. Other modifications, e.g.,
which visit a node twice or simply skip it, are directly encapsulated in the corresponding
function. Utilizing this concept, many obstacles can be eliminated. Simple visitors, e.g.,
those collecting all variables in a certain block, can be implemented with a single line of
code as illustrated in Figure 3.26. The overall code base becomes smaller, while visitors
are defined in-place together with their caller, making maintenance easy to achieve and
data encapsulation a built-in property.

; zeAngTeLiRIllsl;l‘:)ydesOnype(ast, type): in-place Operation: collect all nodes in AST of “type”
3 ret = list()

4

5 def collectByType(node):

6 if isinstance(node, type):

7 ret.append(node)

8 N

9 ast.accept(ASTHigherOrderVisitor{collectByType))

10 return ret

visitor initialized with

“collectByType” as “func” 1 # ASTHigherOrderVisitor.py

2 def visitASTVariable(ast):

——8—————> func(ast)

4 return execute operation on
each node

Figure 3.26: The Higher-Order Visitor: The wvisit operation is provided by the AST whose
subtree shall be visited and the actual operation. This operation can be
either declared in-place by lambda expressions or as a reference to a different
function. The higher-order visitor traverses the tree and invokes the function
on each node.

50

3.5 SUMMARY: MODEL-PROCESSING FRONTEND

In this section, we presented all assisting classes as contained in the framework:
e FrontendConfiguration: A configuration class used to store handed over parameters.
o PyNestMLFrontend: A class providing a simple interface to PyNestML.

e Logger and Messages: A logger with a set of corresponding messages for precise and
easy to filter logs.

o ASTNodeFactory and ASTUtils: Collections of assisting operations as used to create
and modify ASTs.

o ASTOdeTransformer: A component specialized on manipulating ODE blocks.

o ASTHigherOrderVisitor: A visitor which expects a function, which is then executed
on each node in the AST. Makes inheritance for simple visitors no longer necessary.

All these components make PyNestML easier to maintain and ensure basic qualities of a
software, namely data abstraction, separation of concerns and single responsibility. As we
will see in chapter 5, all these characteristics are highly anticipated and make integration
of extensions an easy to achieve goal.

3.5 Summary: Model-processing Frontend

In this section we demonstrated how the model-processing frontend of Nest ML was reengi-
neered and migrated to a new platform. We demonstrated how individual components
were implemented and which intentions directed individual concepts. Here, especially the
separation of concerns and single responsible of components had priority: Each subsystem
is implemented with the smallest possible interface. Changes on components are focused
and continuity is given. All introduced components have been developed based on the
Continuous Integration (CI, [FF06]) and Test Driven Development (TDD, [Bec03]) ap-
proaches, thus all subsystems, from the lexer and parser to the ASTSymbolTable Visitor,
are provided with a rich set of tests, automatically executed with each released update.
The result of the processes as involved in the frontend is hereby the representation of a
textual model by means of an AST, where the semantical correctness of the represented
model has been ensured by the SymbolTable and a set of context conditions. This AST
will be used in chapter 4 to create a transformed, target simulator-specific model.

51

Chapter 4
The Generating Backend

The generation of executable code is one of the most important aspects of a DSL-processing
framework and enables the validation of the modeled concepts. The transformation of a
textual model to an executable representation by means of a DSL framework prevents a
manual, error-prone mapping of models to target platforms. In the case of (Py)NestML,
the NEST simulator [GD07] was selected as the first major platform for code generation.
NEST represents a powerful simulation environment for biological neural networks and
is implemented in C+4. In this chapter, we will demonstrate how the code-generating
backend was reengineered to generate NEST specific C++ code. For this purpose, sec-
tion 4.1 will first introduce the orchestrating NestCodeGenerator class and subsequently
demonstrate how models are adjusted to be more NEST affine. An overview of the com-
ponents used to generate NEST-specific code concludes this chapter. Figure 4.1 illustrates
the subsystems introduced in this chapter and their relations.

4.1 AST Transformations and Code Generation

In order to demonstrate the code-generating backend, this section will first introduce the
coordinating NestCodeGenerator class and show how the code generation is prepared by
transforming the handed over AST to a more efficient form. Subsequently, we highlight
a set of templates used for the generation of NEST-specific C++ code. Concluding, an
introduction to the special case of expression handling as implemented in the Ezpres-
sionPrettyPrinter class is given. Figure 4.2 illustrates all components of the reengineered
backend.

The NestCodeGenerator class orchestrates all steps required to generate NEST-specific
artifacts. The overall interface of this class consists of the analyseAndGenerateNeuron
and generateModuleCode methods. By separating the code generation into two different
operations, a clear single responsibility is achieved. While all steps necessary to generate
the C++4 implementation of a neuron model are executed in the analyseAndGenerateNeu-
ron method, the task of generating a set of setup artifacts is delegated to the generate-
ModuleCode method. The analyseAndGenerateNeuron function hereby implements the
following steps: First, the assisting solveOdesAndShapes function is executed which indi-
cates whether a transformation of the model to a more efficient structure is possible. If
so, the AST is handed over to the further-on presented FEquationsBlockProcessor class,
cf. Figure 4.4, and a restructured AST is computed. Back to the orchestrating anal-
yseAndGenerateNeuron method, an update of the symbol table is invoked by means of
the ASTSymbolTableVisitor, cf. section 3.3. This step is required in order to update the

93

CHAPTER 4 THE GENERATING BACKEND

|

1===----- Assisting Classes F------5

i 1
Y

1
. NEST Code ODE-toolbox
Model-processing Generator
Frontend .
i '
; Model

Transformation

Figure 4.1: Overview of the code-generating backend: The model-processing frontend pro-
vides an input AST for the code generation. The NEST-specific backend first
transforms the AST by means of the model transformation subsystem, before
the NEST code generator is used to generate the respective C++ code. The
instructions how the AST has to be adapted are computed by an external
ODE-toolbox.

—| NestCodeGenerator

+ analyseAndGenerateNeuron(...}

EquationsBlock
+ generateModuleCode(...) Templates "
Processor

- setupStandardNamespace(...)

NESTML2NestTypeConverter —
NestPrinter
+ convert(...)

IReferenceConverter

+ convertBinaryOp(...) ExpressionPrettyPrinter
+ convertFunctionCallf...) - referenceConverter

+ convertNameReference(...)
+ convertConstant(...)

+ convertUnaryOp(...)

GSLNamesConverter | NestNamesConverter
,[+ convertToCPPName(...}

+ printExpression(...}

|)

GSLReferenceConverter || NestReferenceConverter |

!

UnitConverter

+ getFactor(...}

Figure 4.2: Overview of the NEST code generator.

54

4.1 AST TRANSFORMATIONS AND CODE GENERATION

Modify Update Generate
Equations Symbol Table Code

[no equations] T

Figure 4.3: Processing of a model in the NEST backend.

model’s symbols according to the restructured AST where new declarations have been
added. Finally, the generation of C++ code is started by means of the generateModelCode
method. Responsible for the generation of a header as well as an implementation file of a
concrete neuron model, this operation delegates the work to the generateModelHeader and
generateModellmplementation subroutines. Figure 4.3 summarizes the above introduced
workflow.

Depending on the selected simulator or environment different concepts are supported.
This circumstance has to be regarded whenever code is generated. While simulation
environments such as LEMS [CGC™14] support physical units as an integral part of the
simulation, others such as NEST do not. In order to avoid unsupported declarations
of models, an AST-to-AST transformation is implemented which restructures the source
model to a target platform supported format. Besides missing support for certain concepts,
also an optimization of declared models is often of interest. Transformations, therefore,
enable a DSL framework to adjust models to specific targets and generate efficient code.

In the case of PyNestML, all transformations of neuron models are focused on the
equations block, where, depending on the stated declarations, models are restructured and
definitions transformed to a more efficient and easy to generate form. The target simulation
environment NEST utilizes the GNU Scientific Library (GSL, [Gou09]) for the evaluation
and integration of differential equations. GLS expects a special form of the equations block
where only ordinary differential equations (ODEs) with their respective starting values
have been declared. Such a form enables an efficient computation and handling of neuron
spikes. For models which contain declared shapes it is therefore necessary to compute an
exact solution where the equations block evolution is replaced by direct computation steps.
In cases where such an optimization is not possible, at least a transformation of all shapes
to equivalent representations by means of ODEs and initial values shall be computed. Such
a form of the neuron model avoids time-consuming evaluation of shapes for each time-step
t. To summarize, the first major task of the code generator is to perform an AST-to-AST
transformation where the equations block is replaced by an exact solution or all shapes
have been converted to ODEs and initial values. All this helps to normalize the generated
code and therefore to ease its evaluation.

In order to compute these optimizations, the ODE-toolbox as introduced by Blundell et
al. [BPEM18] is integrated. Written in Python, the ODE-toolbox can be used in a black
box manner to restructure a stated equations block to a less computationally expensive
form. Amongst others, it features concepts for a derivation of exact solutions, elimination
of computationally expensive shapes, and constants folding. For an interaction with this
tool, it is first necessary to convert the equations block to a representation processable by
the ODE-toolbox, and subsequently, integrate the computed new formulation of the ODE
or an exact solution into the source AST. The referenced ODE-toolbox is implemented in

55

CHAPTER 4 THE GENERATING BACKEND

EquationsBlockProcessor
+ solveOdeWithShapes(...)
ODE-toolbox by
TransformerBase Blundell et al
+ addVariablesTolnternals...)
+ applylncomingSpikes(...)

T—‘ SymPySolver
+ solveOdeWithShapes(...)

| ExactSolutionTransformer |<— + solveShapes...)
+ InputJSON(...)
L + Output)SON(...)

ShapsToOdesTransfo rmer |

Figure 4.4: The model transformation subsystem: The EquationsBlockProcessor receives a
neuron model. The equations block is extracted and handed over to the ODE-
toolbox by means of the SymPySolver wrapper class. The returned result is
finally processed by the transformers and integrated into the AST.

NestM |_k { JSONK
equations:‘ ‘ Input/SON “ode”: [“V_abs’ =-1/Tau * V_abs”],

shape g_in = (e/tau_syn_in)*t “shapes”:[“g_in = (e/tau_syn_in)*t”,

shape g_ex = {e/tau_syn_ex)*t » » “g ex = (e/tau_syn_ex)*t”

function | pA = I_e + currents 1,

V_abs’ =-1/Tau * V_abs “functions”: [“l = I_e + currents”]
end }

Figure 4.5: From NestML to JSON: In order to interact with the ODE-toolbox, all decla-
rations contained in the equations block are converted to JSON format.

an environment-agnostic manner, where an exchange of data with the toolbox is performed
over the platform-independent JSON format [NPRI09]. Before the ODE-toolbox can be
used, it is therefore first necessary to create a representation of a model’s properties in
JSON format. Such a handling makes the used ODE-toolbox an exchangeable component,
where only the wrapper converting and exchanging data has to be adjusted whenever a
different toolbox is used. PyNestML delegates the interaction with the toolbox to the
SymPySolver class. Summarizing, the overall process as employed in this component can
be described as follows: Given an equations block, print its specifications to an equivalent
JSON string. Hand over the generated JSON object to the ODE-toolbox and finally invoke
the optimizing routine. Afterwards, the computed results are integrated into the AST by
the EquationsBlockProcessor class and its assisting components. Figure 4.4 illustrates the
AST-transforming part of the NEST code generator.

The task of creating a JSON representation of a given equations block is handled by
the InputJSON method. The purpose of this operation is to analyze the equations block,
print all components to a processable format and finally restructure it into a correct
JSON string. This function retrieves three different types of equation specifications as
definable in the equations block, namely all shapes, functions and equations. Instead

56

4.1 AST TRANSFORMATIONS AND CODE GENERATION

Model
Transformation

esti] w0 pmp[o apJ O pmpsson Jmp{O pmp[Tesn)

Figure 4.6: Interaction with the ODE-toolbox: Stated declarations in the source model are
transformed to an equivalent representation in JSON format and handed over
to the ODE-toolbox. The computed modifications are de-constructed from
JSON format to a collection of individual definitions and integrated into the
model.

Input/SON ODE-toolbox

of handing over an AST to the ODE-toolbox, all expressions are first printed by means
of the ExpressionPrettyPrinter class, cf. Figure 4.2, to a Python-processable format.
By exchanging strings instead of objects, a better control and comprehension of all side
effects is achieved. For all three types of declarations in the equations block, PyNestML
implements an additional printing routine: The printEquation function retrieves the name
of the left-hand side variable together with the differential order and combines it with
the right-hand side expression printed by the EzpressionPrettyPrinter. This procedure is
executed analogously for shapes and functions. Finally, it remains to combine the stored
strings to a valid JSON format. The InputJSON function therefore iterates over the stored
strings and combines them by means of a correct syntax as illustrated in Figure 4.5. The
result of the process as implemented in this function is a JSON string encapsulating all
equations block specifications in a format processable by the ODE-toolbox.

Having a representation of the equations block in an appropriate string format, PyNest ML
starts to interact with the ODE-toolbox. The concrete communication is hereby delegated
to the orchestrating SymPySolver class. This component represents a wrapper for the
ODE-toolbox and executes all steps as required to communicate with the toolbox and
convert the input and output to appropriate formats, cf. Figure 4.6. The input format is
hereby encapsulated in a JSON string as constructed by the InputJSON function, which
is subsequently handed over to the compute-solution operation of the ODE-toolbox. The
result of this operation is a set of modified declarations where certain parts have been
replaced or simplified, e.g., shapes represented by ODEs and initial values. Analogously
to the input, the output as returned by the toolbox is also represented by means of a
string in JSON format. It is, therefore, necessary to parse the modified declarations and
inject them into the currently processed AST. In order to make the overall processing
modular and easy to maintain, PyNestML implements the OutputJSON function which
is solely used to de-construct a JSON string to a collection of individual elements. The
actual processing and injection of computed ODE declarations into ASTs is delegated to
the TransformerBase and its assisting classes.

The QutputJSON function returns a dictionary of fields for different declarations as
computed by the ODE-toolbox. All fields store the modified ODE declarations as a string,
while the actual parsing is executed by subsequent components. The status field, for
instance, indicates whether any problems occurred during the equations block processing.
The remaining fields analogously define other properties which can be added by the ODE-
toolbox, e.g., new state variables and differential equations. The decomposed output as

57

CHAPTER 4 THE GENERATING BACKEND

[exact solution m
computed] l Exact Solution |

lace Shapes
Create Deep I 5 ‘ ’ 5 Start ’ ‘ [shapes Rep
| tISON OutputJSON — by ODE with
.9[Copy of AST ney ODE-toolbox utpd eliminated] In\fﬁalvmes .)

| [error]
terminate

[no equations block]
terminate

Figure 4.7: The model-transforming process.

stored in the dictionary can now be used to perform an AST-to-AST transformation.

Having an optimized structure of the equations block, PyNestML starts to transform the
AST. Here, depending on the type of the returned solution, a different handling is required.
However, which handling is concretely executed should not be a concern of PyNestML,
but rather selected according to the toolbox output. This routine is therefore implemented
in the EquationsBlockProcessor class which encapsulates all steps of the transformation
in a single method. Consequently, whenever it is required to analyze a given model and
transform it according to the computed modifications, the functionality as contained in
this class is used. The underlying processing is hidden and therefore easy to exchange and
maintain.

The transformation of a neuron model can be invoked by means of the solveOde-
WithShapes method of the FquationsBlockProcessor. This operation expects a single neu-
ron model and performs a series of steps as illustrated in Figure 4.7. First, a new deep
copy of the processed AST is created. Potentially having several targets for code gen-
eration with individual transformations, each backend transformation should work on a
local copy instead of modifying a global one. Without creating a local working copy, each
modification would be visible to all implemented backends, possibly preventing correct
processing whenever a transformation is not appropriate for a given target. Subsequently,
the routine checks whether an equations block is present. Obviously, no modifications are
required if no equations are given, thus the operation terminates and returns the current
working copy. Otherwise, the content of the neuron’s equations block is delegated to the
previously introduced SymPySolver class. Depending on the results as returned by the
ODE-toolbox, a different handling is employed: In the case that at least one shape and
exactly one equation are contained in the textual model, the toolbox is most often able
to compute an exact solution. Computed modifications of this type contain new variables
and assignments, thus the task to transform the processed working copy is delegated to
the FxactSolutionTransformer class, cf. Figure 4.4. FExpecting a JSON string, this class
parses and injects all returned modifications into the processed AST. In cases where a
given equations block contains only shapes, the ODE-toolbox tries to derive a solution
where shapes are replaced by equations and initial values, making the computation less
time and resources consuming. The corresponding adaption of the AST is delegated to
the ShapesToOdesTransformer class which replaces shapes by their computed ODE coun-
terpieces. The FEzactSolutionTransformer and ShapesToOdesTransformer classes hereby
import the assisting TransformerBase class. This component contains general functional-

58

4.1 AST TRANSFORMATIONS AND CODE GENERATION

ity as required to process both types of returned solutions, e.g., the applyIncomingSpikes
method which replaces all convolve function calls in the equations block by concrete update
instructions, e.g., assignments of values stored in buffers to state-variables. For certain
types of declarations, the ODE-toolbox by Blundell et al. is not able to derive a more
efficient solution [BPEM18]. In these cases, the NEST simulator performs a time consum-
ing numeric integration of the unmodified equations block. Not supported declarations
as well as errors during the equations block processing are hereby indicated by the status
field of the JSON object as returned by the toolbox. In this case, the local working copy
of the AST is not further modified but simply returned to the code-generating subsystem.
As previously stated, the overall processing implements a transformation which is specific
to the NEST simulator. However, other backends may also reuse parts of the presented
classes. Consequently, all concrete transformations as implemented in the EzactSolution-
Transformer, ShapesToOdesTransformer as well as the TransformationBase class have
been summarized in a dedicated module.

The optimized representation of the source model is returned to the orchestrating anal-
yseAndGenerateNeuron method of the NestCodeGenerator class. Here, it is first prepared
for the code generation by retrieving general characteristics and setting up a generation
context which states, e.g., whether a spike buffer is contained in the model. Subsequently,
a template engine and a set of templates are used to generate model-specific C++ code.
The result of this step is an executable representation of a source model as well as a set of
additional artifacts which can now be used to integrate the neuron model into the NEST
simulator.

Jinja2 as well as many other template engines often do not directly interact with the
AST, but follow a more general concept by operating on a generation context. Such a
context consists of a map from identifiers to objects, methods and other properties. For
instance, if the generating routine has to be able to interact with the ASTUtils class, it
is required to create a dictionary mapping a unique identifier to an ASTUtils class refer-
ence. This identifier can then be used in the context of the template to interact with the
corresponding object. Before the code generation is invoked, it is therefore first necessary
to set up a generation context. In the case of PyNestML, this context consists of several
processed objects as well as assisting classes, cf. Figure 4.8. For the sake of modularity, the
creation of an appropriate context is delegated to the setupStandardNamespace function
which instantiates a generation context according to the handed over AST.

Having a set up context, the NestCodeGenerator initiates the actual code generation by
invoking the render operation on the further on introduced templates, with the result being
a set of generated C++ artifacts as illustrated in Figure 4.9. In order to enable an easy to
achieve integration of the generated C++ code into the NEST infrastructure, PyNestML
implements a concept for the generation of setup files. By utilizing predefined extension
points of NEST, new neuron models can be integrated into the simulation environment by
means of a corresponding module file. The task of generating these artifacts is delegated to
the generateModuleCode procedure. Except for a different set of templates, this method
behaves analogously to the above-introduced generateModelCode procedure. After all
model-specific as well as setup artifacts have been generated, the control is returned to
the PyNestML workflow unit.

As demonstrated in section 2.1, often target implementations can be described in a

99

CHAPTER 4 THE GENERATING BACKEND

:AST

EquationsBlock Frontend
Processor Configuration
NestCodeGenerator

NestPrinter /\ ASTOdeTransformer

ExpressionPretty
Printer

ASTUtils

Figure 4.8: The NESTCodeGenerator class and assisting components.

izhikevich.c \| izhikevich.h \|

ﬁ model artifacts

izhikevich.nestml \|

set-up artifacts Q g module artifacts

module-init.sli \| CMakelist.txt \| module.c \| module.h \|

Figure 4.9: Generated artifacts of the Izhikevich neuron model.

schematic way by means of a template, where placeholders are replaced by model-specific
details in order to get executable code. These templates represent a major component
of a code generator and are used by the above-introduced routines, e.g., the generate-
ModelHeader method. The implemented NEST backend employs six governing templates
and a set of assisting sub-templates. Models of neurons are generated by means of the
NeuronHeader and NeuronClass template, while the generation of a model integration file
is delegated to the ModuleHeader and ModuleClass templates. The generation of setup
files is delegated to the SLI_Init and CMakeList templates. Figure 4.10 exemplifies how
templates are used by means of generated C++ code. The processing as executed by
the generator engine involves a retrieval of data from the model’s AST and the symbol
table, and a replacement of placeholders in the evaluated template. All required decla-
rations are hereby extracted from the AST by the corresponding getier operation, e.g.,
getStateSymbols, and stored in C++ syntax.

While templates, in general, are able to depict an arbitrary syntax, their usage can
become inconvenient whenever many cases have to be regarded and conditional branching
occurs. This problem becomes more apparent when dealing with expressions: While the
overall form of the AST is restructured to be more NEST afline, individual elements
remain untouched and are still represented in PyNestML syntax. However, certain details
such as the used physical units are not supported by NEST. It is therefore required to
transform atomic elements such as variables and constants to an appropriate representation
in NEST. Moreover, in a single model it may be necessary to represent a certain element
in different ways, e.g., Figure 4.11. Consequently, it is not possible to simply modify

60

4.1 AST TRANSFORMATIONS AND CODE GENERATION

NeuronClass]

1
izhikevich_neuron::izhikevich_neuron():Archiving_Node(), P_(), S_(), B_(*this){ CPP k
recordablesMap_.create();
P_.__gsl_error_tol = 1e-3;
'I P_.a=0.02; // as real
P_.b=0.2; // asreal
P_.c=(-65*%1.0); // as mV

P

MemberInitialization

[

}
T extern "C" inline int izhikevich_neuron_dynamics(double, const double ode_state[], double f[], void* pnode){
typedef izhikevich_neuron::State_ State_;
assert(pnode);
const izhikevich_neuron &node = *(reinterpret_cast<izhikevich_neuron*>(pnode));
f[State_::V_m] = (0.04 * ode_state[State_::V_m] * ode_state[State_::V_m]);
f[State_::U_m] = node.get_a() * (node.get_b() * ode_state[State_::V_m] - ode_state[State_::U_m] * 1.0);
return GSL_SUCCESS;
1!
void izhikevich_neuron::update(nest::Time const &origin, const long from, const long to){
double __t=0;
for (long lag = from ; lag < to ; ++lag) {

GSLDifferenTiaTionFuncTion]

| B_.spikes_grid_sum_ = get_spikes().get_value(lag);
B_.currents_grid_sum_ = get_currents().get_value(lag);
_t=0;
while { __t<B_.__step){
const int status = gsl_odeiv_evolve_apply(...);
Block] }
}
S_.ode_state[State_:V_m] += B_.spikes_grid_sum_;] | AssignmenT
S_.ode_state[State_::V_m] = ((S_.ode_state[State_::V_m]<P_V_min))?(P_V_min):(S_.ode_state[State_:V_m]);
if (S_.ode_state[State_::V_m]>=30%1.0) {
S_.ode_state[State_::V_m]=P_.c; | IfStatement]
e)
b

Figure 4.10: Templates and the generated code of the Izhikevich neuron model.

V = numerics::e * node.get_V_init()
ODE evolve block

V=e*V init ~ —---—o oo 22E2EE_

g rest of the model

V = numerics::e * V_init

Figure 4.11: Context sensitive target syntax.

61

CHAPTER 4 THE GENERATING BACKEND

:ASTExpression | —=> std:pow(5*1, std::log(V))

convert(**)
==std::pow()

5*1 :ASTExpression :ASTArithmeticOp :ASTExpression std::log(V)
convert(5mV) : convert{log(V))
== 5*1 i ==std::log(V)

:ASTSimple :ASTSimple
Expression

Expression

©

Figure 4.12: From ASTFEzpression to a string.

the AST to use appropriate references and definitions. PyNestML solves this problem by
using an ad-hoc solution as implemented in the ExpressionPrettyPrinter class. Mostly
used whenever expressions have to be printed, this class is able to generate a handed over
AST object in a specified syntax. Similar to the type deriving routine, cf. section 3.2,
the ExpressionPrettyPrinter class first descends to the leaves of a handed over expression
node. Subsequently, all leaf nodes are printed to a target-specific format, before being
combined by counterpieces of the stated operators. This process is executed until the root
node has been reached. The returned result is then used to replace a placeholder in the
template by a string representation of the expression.

The key principle of the ExpressionPrettyPrinter class is its composable nature: While
the FxpressionPrettyPrinter only dictates how subexpressions and elements have to be
printed and combined, the task to derive the actual syntax of elements and operators is
delegated to so-called reference converters. Implementing the template and hook pattern
[VHJG95], here it is possible to utilize different reference converters to print elements and
operators into a different syntax. Figure 4.12 demonstrates how expressions are trans-
formed to a string representation by utilizing the above-introduced routine.

The abstract IReferenceConverter class declares which operations concrete reference
converter classes have to implement. Besides converting functions for binary as well as
unary operators, it is also necessary to map variables, constants and function calls. All
these elements are therefore provided with their respective convert functions expecting
an AST node of a corresponding type. The EzpressionPrettyPrinter class hereby stores a
reference to the currently used reference converter, which is then used to convert the above-
mentioned elements. The separation of a reference converter and the pretty printer leads to
an easily maintainable and extensible system: Similar to the visitor pattern, cf. section 3.1,
where only the wvisit method has to be adjusted, here the user can simply replace or extend
the reference converter without the need to modify the overall printing routine. Moreover,
the code-generating routine becomes composable, where the implemented pretty printer
can be independently combined with different reference converters.

The NESTReferenceConverter is the first concrete implementation of the IReference-
Converter class and is used whenever concepts of NestML have to be converted to those in
NEST. Being used in almost all parts of the provided templates, this class features a con-

62

4.1 AST TRANSFORMATIONS AND CODE GENERATION

version of operators and constants to their equivalents of the NEST library. As illustrated
in Figure 4.12, each element of a given expression is inspected individually and a counter-
piece in NEST is returned, making the generated code semantically correct and references
valid. The GSLReferenceConverter class implements the handling of references which is
only required in the context of equation blocks. NEST utilizes GSL for the evolvement
of equations. Consequently, references as stated in the equations block have to resolve to
elements of GSL. The GSLReferenceConverter hereby inspects the handed over element
and returns the respective counterpiece. If a mapping is not defined, the element is simply
returned without any modifications.

convert ToCPPName
V=V +22mV * foo{10mV) _DV=_DD_V+22mV * foo(10mV)
convertToCPPName

Figure 4.13: Adaption of syntax by the convertToCPPName method.

C++ as well as many other languages do not support the apostrophe as a valid part of an
identifier. Consequently, variables stated together with their differential order can not be
directly generated as C++ code. PyNestML solves this problem by implementing an on-
demand transformation of names, executed whenever a variable is processed during code
generation. In the case that the name of a generated element contains an invalid literal,
PyNestML employs the convertToCPPName operation which prefixes a variable for each
stated order by the letter D, cf. Figure 4.13, resulting in a valid C++ syntax. Moreover,
as illustrated in Figure 4.10, generated code features information hiding where attributes
of objects and classes can only be accessed by the corresponding data access operations.
Together with the convertToCPPName function, a conversion of names and references
to their respective data access operation is implemented in the NestNamesConverter, re-
spectively GSLNamesConverter class for the processing of equations. Both elements are
accessed during code generation and the usage of the FxpressionPrettyPrinter class.

1
NestML : NEsST
integer 1 int
real | double
string 1 string
void : void
boolean ! bool
buffers : RingBuffer
Sl units : double

Figure 4.14: Mapping of NestML types to NEST.

The second type of assisting component, namely the NestPrinter class, is used across
the overall backend and implements several methods as often required. The printOrigin
method, for instance, states from which type of block the corresponding variable or con-
stant originates. Depending on the origin, a different prefix is attached, e.g., S_. for state
or P_. for parameters. Such a handling is required given the fact, that all attributes in
the generated code are stored in structs [Sch98] of their respective types. By prefixing

63

CHAPTER 4 THE GENERATING BACKEND

an element’s name by a reference to its structure, the correctness of generated code is
preserved.

The NESTML2NestTypeConverter class provides a mapping from NestML types to
appropriate types in C++, cf. Figure 4.14. It should be noted that NestML buffers repre-
sent variables and consequently have to be declared with a respective type. For this pur-
pose, NEST’s implementation of the RingBuffer is used as the corresponding counterpiece.
Whenever an element is generated, the functionality contained in the NESTML2Nest Type Converter
class is used and an appropriate NEST type is returned.

Symbol E Name
ms i milliseconds
pF | picofarad
mv | millivolt
pA ' picoampere
nS | nanosiemens
MOhm | mega ohm

Figure 4.15: Common neuroscientific physical units.

In the case of physical units additional handling is required. NEST assumes that only a
restricted set of physical units, the so-called common neuroscientific units as illustrated in
Figure 4.15, are used. In the case that a given constant or variable utilizes a physical unit,
the corresponding C++ code is generated without any units and only the numeric part is
regarded. Nonetheless, to preserve semantical equivalence of the generated code and the
source model, the scalar of a unit is derived in the following manner: In the case that an
atomic unit is given, e.g., mV, PyNestML checks whether it is a common neuroscientific
unit or not. If so, the neutral scalar 1 is returned. Otherwise, the value is scaled in
relation to its common neuroscientific unit, e.g., V is converted to mV and the scalar
1000 is returned. In the case that a compound unit is used, e.g., mV x s, the evaluation is
executed recursively and all scalars combined. Figure 4.16 illustrates this procedure. The
UnitConverter class implements a routine which is able to perform these steps and scale
values according to their physical units. This component is invoked during the generation
of expressions and declarations to C++ code, and preserves semantical equivalence of the
initial model and the generated code.

, (20 V * 5000 Ohm) / mOhm -,

’ ~

ViomV i Ohm fo MOhm ~ _ mOhm to MOhm
-> scalar 1072 / !5 scalar 107-6 . -> scalar 107-9
J/ ' . NestML
------- e e e E T TP
i v 4 NEST
20*1072 5000*107-6 1*107-9
\\& \:J k”

(20*1000 * 5000*0.000001) / (1*0.000000001)

Figure 4.16: The conversion of physical units from PyNestML to NEST.

However, a mapping of physical units to their respective scalars is not bijective. For

64

4.2 SUMMARY: THE CODE-GENERATING BACKEND

instance, the scalar 1000 in a generated expression could originate from the unit volt
or second, or be a simple scalar stated in the source model. Such a handling makes
troubleshooting of generated code complex where the origin of an element is not directly
clear. This problem is solved by the IdempotentReferenceConverter class, a component
which implements a simple identity mapping, i.e., all elements are converted to themselves.
This class is used during the generation of a model’s documentation where all variables,
types, as well as references, are generated in plain NestML syntax.

Together with the above-presented set of assisting classes, the functionality as imple-
mented in the FExpressionPrettyPrinter class enables PyNestML to print complex expres-
sions and other declarations without utilizing templates with cascaded branching and
sub-templates for the generation of atomic parts, e.g., function calls. The result is an easy
to maintain set of components, where complexity is distributed across several subsystems
and no god classes or templates [Rie96] are used.

4.2 Summary: The code-generating Backend

We conclude this chapter by a brief overview of the implemented routines as well as the
performed refactoring steps. Section 4.1 demonstrated how NEST-specific C++ code
can be generated from an optimized AST. Here, we first introduced the coordinating
NestCodeGenerator class and showed how code generation is prepared. To this end, we
outlined how declarations of models can be optimized by restructuring the equations block
to a more efficient form. The computation of the optimizations is hereby delegated to the
ODE-toolbox by Blundell et al. In order to integrate the results as returned by the toolbox,
we implemented the EquationsBlockProcessor and its assisting classes. Together, these two
components yield a more efficient definition of a model. Subsequently, we highlighted a
set of templates used to depict the general structure of generated C+-+ code. In order to
reduce the complexity in the used templates, PyNestML delegated the task of generating
expressions to the ExpressionPrettyPrinter class. Together, these components implement
a process which achieves a model to text transformation on textual models.

PyNestML has been developed with the intent to provide a base for future development
and extensions. As we demonstrated in section 4.1, the transformation used to construct
NEST-affine and efficient code has been called from within the NEST code generator as
a preprocessing step. Future backends for target platform-specific code generation can,
therefore, implement their individual and self-contained transformations, while all back-
ends receive the same, unmodified input from the frontend. Individual modifications of
the AST can be easily implemented as composable filters in the AST processing pipeline.
Nonetheless, some of the model optimization steps are of target platform-agnostic nature,
e.g., simplification of physical units, and are therefore implemented as a target-unspecific
component in the workflow. Moreover, the key principle of the ExpressionPrettyPrinter,
namely its composability by means of reference converters, represents a reusable compo-
nent which can be used for code generation to arbitrary target platforms. All this leads
to a situation where extensions can be implemented by composing existing components.

65

Chapter 5
Extending PyNestML

As typical for all types of software, requirements of the implementation often change.
PyNestML was implemented with the aim to provide a modular and easy to extend frame-
work which can be adjusted and reconfigured by exchanging components, e.g., context
conditions and reference converters. In this chapter, we will briefly demonstrate how ex-
tensions to PyNestML can be implemented. Representing components which are often
adapted, the following use cases are introduced:

e Grammar: How can the grammar artifacts be extended and in consequence which
components have to be adapted?

e Context Conditions: How can new semantical rules be introduced?
e Code Generation: How can the code generator be extended?

All three scenarios represent use cases which often occur when new types of supported
concepts are introduced.

5.1 Modifying the Grammar

The following (hypothetical) use case illustrates the extension of the grammar: A new type
of block shall be introduced. Declaring constraints which have to hold in each simulation
step, this block contains boolean expressions representing invariants of the neuron model.
It is therefore first necessary to extend PyNestML’s grammar to support a new type of
blocks. Figure 5.1 illustrates how a new grammar rule is introduced to support this use
case.

PyNestML.g4 \\
body: BLOCK_OPEN
(NEWLINE | blockWithVariables | equationsBlock | inputBlock | outputBlock | updateBlock | function | invariantBlock)*
BLOCK_CLOSE;

<k// include new block type
invariantBlock: 'invariant' BLOCK_OPEN

(expression NEWLINE)*
BLOCK_CLOSE;

Figure 5.1: New grammar rules: In order to include a new grammar rule, the existing body
production is extended by a reference to the extension. The invariantBlock
production encapsulates the added concept.

67

CHAPTER 5 EXTENDING PYNESTML

The grammar artifacts represent the starting point of each DSL. Consequently, all mod-
ification to the grammar have to be propagated to components which depend on its struc-
ture, namely:

e The lexer and parser used to parse a model to a parse tree.
e The AST classes storing details retrieved from the parse tree.
e The base visitor as well as the ASTBuilderVisitor classes.

e The symbol table building visitor as encapsulated in the ASTSymbolTable Visitor.

In section 3.1 we introduced how a manual implementation process of the lexer and parser
can be avoided by utilizing Antlr. By executing Antlr on the modified grammar artifact, an
implementation of the lexer and parser adapted to the extensions is generated. Together,
these components are used to create the parse tree representation of a model. Proceeding,
it is now necessary to provide a mutable data structure which is able to hold details
retrieved from the parse tree. A new ASTInvariantBlock class is therefore implemented
which holds all details of the new rule. As shown in Figure 5.1, each invariant block
consists of a set of expressions. Consequently, the ASTInvariantBlock class features an
attribute which stores lists of ASTFExpression objects. Together with a set of data retrieval
and modification operations, this class represents a data structure which is able to hold
all invariants of a neuron model.

Having a modified meta model, it remains to adapt PyNestML to retrieve invariants
from the parse tree. PyNestML delegates the initialization of an AST to the AST-
BuilderVisitor class, cf. section 3.1. Figure 5.2 illustrates how the AST-building routine
has to be adapted to regard the new invariant block. Here, it is also necessary to extend
the existing visitASTBody rule to include the instantiation of ASTInvariantBlock nodes.
With the modified structure of an AST where a new type of node has been added, it is
also necessary to adapt the ASTVistor class. Implementing a basic traversal routine on
the AST, here it is crucial to include an additional traversal method for the new type of
AST node as well as the corresponding visit routine. Both methods can then be extended
in concrete visitors in order to interact with the invariant block. As illustrated in Fig-
ure 5.3, all extensions are focused in a small set of methods. Besides a modification of the
dispatcher methods, individual monomorphic functions are added.

An initialized AST represents a base for further checks and modifications. Section 3.3
illustrated how semantical checks are implemented by means of a symbol table and a
set of context conditions. With a new type of block, it is therefore necessary to adapt
the symbol table building routine. Extending the AST Visitor class, all modifications
are focused in the ASTSymbolTableVisitor. Figure 5.4 illustrates how the symbol table
construction routine has to be adapted. Together, these steps enable PyNestML to parse
a model containing the new invarinat block, construct the respective AST and populate
the symbol table with all required details.

5.2 Adding Context Conditions

Whenever a DSL is extended by new concepts, it also becomes necessary to regard addi-
tional semantic rules. In the case of the invariant block, it is essential to ensure that only

68

5.2 ADDING CONTEXT CONDITIONS

1
2 ..
3 def visitASTBody(self, ctx)
4 body_elements = list()
5 if ctx.invariantBlock() is not None:
6 body_elements.append(self.visit(ctx.invariantBlock()))
7 ..
8 sourcePos = ...
9 body = ASTNodeFactory.makeASTBody(body_elements, sourcePos)
10 return body refer o new rule
11
12
13 def visitASTInvariantBlock(self, ctx):
14 expressions = list()
15 for expr in ctx.expression(): collect all invariants
16 expressions.append(self.visit(expr)) }
17 sourcePos=..
18 invariantBlock = ASTNodeFactory.makeASTInvariantBlock({expressions, sou rcePos} refurn
2.0 return invariantBlock new node

Figure 5.2:

Figure 5.3:

Modifying the AST builder: In order to initialize an AST according to the
new grammar, the ASTBuilderVisitor is extended by an ASTInvariantBlock
node building method. An adaptation of the existing wvisitASTBody method
includes the new rule.

18
19
def visit(self, node) 20
if isinstance(node, ASTInvariantBlock): 21 ..
self.visitASTInvariantBlock(node) 22 def visitASTInvariantBlock (self, node):
23 pass
24
def traverse(self, node): 25 def traverseASTInvariantBlock({self, node):
if isinstance(node, ASTInvariantBlock): 26 for exprin node.getExpressions():
self.traverseASTInvariantBlock(node) 27 self.visit(expr)
28
29 def endvisitASTInvariantBlock(self, node):
def endvisit(self, node): 30 pass
if isinstance(node, ASTInvariantBlock): 31
self.endvisitASTInvariantBlock(node) 32
33
\——extend dispatcher methods 34 provide monomorph hook methods

Modifying the AST visitor: The ASTVisitor class is adapted to support the
new type of AST node. The dispatcher functions are adapted, while new
monomorphic hook methods are added.

69

CHAPTER 5 EXTENDING PYNESTML

1
2 .
3 def traverseASTBody(self, node):
4 for elem in node.getBodyElements():
5 if isinstance(elem, ASTInvariantBIock):\JL .
. . dispatch new type of node
6 self.visitASTInvariantBlock(elem)
7 if isinstance(elem, ASTUpdateBlock):
8 self.visitASTUpdateBlock(elem)
9
10

11 def visitASTInvariantBlock(self, node):
12 for expr in node.getExpressions():

13 expr.updateScope(node.getScope())
14

15 ..

Figure 5.4: Adapting the ASTSymbolTableVisitor: The traverseASTBody method is ex-
tended to regard the new type of block, while the actual handling of the block
is delegated to the wvisitASTInvariantBlock method.

boolean expressions have been stated in this type of block. With an initialized AST, this
property can be easily checked by a new context condition. Whenever new semantic rules
are established, it is therefore necessary to implement the following adaptation:

e A new context condition implementing all required context checks.
e A modification of the coordinating CoCosManager class.

In order to achieve modularity, each context condition is encapsulated in an individual
class. The new CoColnvariantBlockCorrectly Typed class therefore implements all processes
as required to check the handed over AST for correctness. Concrete checks are delegated
to the Invariant Type Check Visitor class. Extending the AST Visitor, this class implements
a routine which visits the ASTInvariantBlock node of a given AST and iterates over all
stated expressions. Section 3.2 illustrated a preprocessing of the AST where the types of
all expressions have been derived. It therefore only remains to check whether a boolean
expression has been stated. Figure 5.5 outlines how these modifications are implemented.

PyNestML delegates the task of checking models for semantical correctness to the or-
chestrating CoCosManager class. Storing references to all implemented context conditions,
this class encapsulates all implemented semantical checks. It is therefore necessary to ex-
tend this class by a reference to the above-introduced CoColnvariantBlockCorrectly Typed.
Whenever a processed model is checked, all context conditions are consecutively invoked
on the AST and errors are reported. Figure 5.6 illustrates how the CoCosManager class
has to be extended to regard a new context condition.

5.3 Modifying the code-generating Backend

With the introduction of new concepts to the model-processing frontend, it is also often
intended to generate new artifacts or additional code. Extensions are hereby focused in the

70

5.3 MODIFYING THE CODE-GENERATING BACKEND

W ooO~NOYU D WN PR

10
11
12
13
14

Figure 5.5:

Figure 5.6:

class CoColnvariantBlockCorrectlyTyped(CoCo):
@classmethod encapsulate context
def checkCoCof{cls, neuron): condition in a class

visitor = InvariantTypeCheckVisitor()
neuron.accept(visitor)

— new visitor implementing the checks
class InvariantTypeCheckVisitor(ASTVisitor):
def visitASTInvariantBlock(self, node):
for expr in node.getExpressions():
if expr.getType() is not PredefinedTypes.getBooleanType():
Logger.logMessage(...)
report issue

Adding context conditions: Each context condition is implemented in a self-
contained class with all required functionality to check the context.

1
Python
2 class CoCosManager(object):
3 ..
4 def postSymbolTableChecks(cls, neuron): include new CoCo
5 - in checks
6 CoColnvariantBlockCorrectlyTyped.checkCoCo(neuron)
7 CoCoAllVariablesDefined.checkCoCo(neuron)
8

Extending the CoCosManager: New context conditions have to be made
known to the managing CoCosManager class.

71

CHAPTER 5 EXTENDING PYNESTML

NeuronCIass.jinjaZh

/* Parameter and state extractions and manipulation functions*/
{{neuronName}}::Buffers_::Buffers_({{neuronName}} &n): logger_(n)
{%- if useGSL-%} , _s(0),__c(0),__e(0)

{%- endif -%}{

// Initialization of the remaining members is deferred to init_buffers_().
}
{%- if neuron.haslInvariants() -%}

{%- include "Invariant.jinja2" -%}
{%- endif -%}

include template for invariant generation

Invariant.jinja2
{{neuronName}}::Invariant{{{neuronName}} &n){

{%- for inv in neuron.getinvariants() -%}
assert({{printer.printExpression(inv.getExpression())}});
{%- endfor %}

}

Figure 5.7: Inclusion of new templates: The existing set of templates is modified to include
additional templates. For the sake of modularity, each extension should be
implemented in an individual artifact.

employed templates which depict how code has to be generated. In the case of the invari-
ant block as introduced in the previous section, it is necessary to extend the existing set of
templates to enable a generation of invariants in C++ code. The modularity of templates
enables an easy to extend structure where additional concepts can be included by imple-
menting sub-templates. New templates can be composed of existing ones. Modifications
to the code-generating backend are hereby conducted in the following components:

e New templates which embody additional code that has to be generated.
e The governing templates in order to include the extensions.

As illustrated in Figure 5.7, the existing NeuronClass template is extended by a new
invariant function which checks all stated invariants during the execution of the sim-
ulation. JinJa2 as the underlying generator engine of PyNestML features concepts for
template inclusion and therefore enables an easy extension of PyNestML’s code genera-
tor. The referenced template is hereby implemented as a new artifact. In conclusion, it
is sufficient to implement all extensions in individual templates and include them by the
above-demonstrated mechanism.

72

Chapter 6
The MontiCore Language Workbench

As shown in the previous chapters, the engineering of domain-specific languages is an
error-prone process with many pitfalls and hard to find mistakes. While errors in the
underlying grammars can be mostly detected and reported by the processing tools, many
other components are completely written by hand and require a manual review process
in order to detect unintended behavior or side effects. Here, the generation of software
components has emerged as a possible solution to avoid these problems and accelerate the
overall development process of a DSL. By verifying the component-generating framework
by means of formal approaches [Ble05], it can be ensured that the generated results are
correct. Several tools and complex workbenches have been developed in recent years sup-
porting a wide range of tasks, cf. [SSVTb], from the generation of the underlying structure
of the required components, e.g., classes where all methods have to be implemented by
hand, through to more complex subsystems with fully functional routines such as visi-
tors [HNRW16]. In this work, we will focus on the state-of-the-art language workbench
MontiCore [KRV10, RH17] and demonstrate how a correct extension and integration of
this framework can significantly reduce the overall implementation effort. The goal of this
chapter is, therefore, to illustrate how MontiCore can be extended to support a new plat-
form for the generation of several components as introduced in previous chapters, making
a manual adaptation of the code base unnecessary whenever new extensions to PyNestML
are implemented. For this purpose, we first briefly introduce MontiCore’s workflow in
section 6.1, before demonstrating in section 6.2 how it can be extended to support a new
target platform.

6.1 The Workflow of MontiCore

The MontiCore Language Workbench is a framework developed with the intent to support
and, in part, automate the development of DSLs. MontiCore provides a rich and expressive
grammar declaration language for the definition of the abstract and concrete syntax in the
same artifact. For this purpose, a syntax similar to Antlr was selected and enriched
by several semantical as well as syntactical concepts, e.g., interfaces which enable the
concept of inclusion polymorphism [Rey09] in grammar rules. With more than one decade
in practice, many quality of life features were evaluated and integrated to accelerate a
grammar definition and reduce the poor legibility as often present in defined grammars.
Syntactical adaptations were focused on a clearer declaration of grammars, e.g., where
tokens and grammar rules can be directly distinguished by their respective keywords.
The core of MontiCore is a powerful grammar-processing engine, enabling the automated

73

CHAPTER 6 THE MONTICORE LANGUAGE WORKBENCH

internal representation of .
the grammar as a class Function DSL-specific componen’rs/\/

diagram Library
Code
om0y {09 {0 oy

Grammar J Generator
Parser refined grammar Engine

grammar of a DSL
in .mc4 format
Figure 6.1: MontiCore’s workflow: A given grammar in MontiCore format is first read in by
a grammar parser and an internal representation by means of a class diagram
is created. The class diagram is subsequently processed by the function library
and enriched by additional classes, methods, and attributes. An extended class
diagram is finally handed over to a target-specific code generator engine. The
result is a generated set of DSL-specific components which can now be used in
concrete projects to parse and interact with models.

transformation and generation of a large set of components as often required in concrete
DSLs: Besides AST classes' for all instantiable elements of the handed over grammar,
MontiCore features a routine for an automated derivation and generation of AST visitors
[HNRW16]. For the sake of semantical correctness of read-in models as processed by the
handled DSL, MontiCore partially generates the structure of a symbol table and context
conditions [HMSNR15]. The generation of a lexer and parser for the language as denoted
by the grammar artifact completes the feature set, enabling the user of the workbench
to derive a self-contained and easy to adapt collection of tools for the declared DSL.
MontiCore, therefore, represents an ideal starting point for the engineering of new modeling
languages, where many components are no longer written by hand but generated by the
workbench.

Figure 6.1 illustrates the overall grammar-processing routine which consists of three
major steps, each of which implemented as a modular component and geared together to
generate a DSL-specific toolchain. The workflow is initiated by providing the workbench
with one or more DSL-defining grammars, an artifact written in MontiCore’s grammar
specification language and identifiable by the file ending mec4. MontiCore grammars feature
a syntax which is structured according to the Extended Backus-Naur Form (EBNF) and
is similar to other existing grammar specification languages, cf. [PLWT00]. Analogously
to Antlr, cf. section 2.1, a grammar artifact is composed of lexer and parser productions,
defining the abstract as well as concrete syntax of a DSL [KralO]. Here, a modular
and concise structure represents the key advantage: MontiCore features a concept for
the composition of grammars by means of components [HLPT15]. By reusing existing
grammar elements, e.g., token definitions, only the core of a DSL as represented by the
grammar rules has to be designed by hand. A definition of tokens is usually not required
but can be imported from MontiCore’s rich collection of predefined tokens. In conclusion,
the grammar is constructed according to the building block approach, where a given DSL
is designed by composing existing components. Figure 6.2 illustrates the working example
grammar as introduced in Figure 3.3 adapted to MontiCore’s grammar format. As we

Loften referred to as the Meta Model of a DSL

74

6.1 THE WORKFLOW OF MONTICORE

1 package org.pynest;
2
3 grammar PyNestML extends de.monticore.literals.Literals {
4 \ import MontiCore
token collection
token COMMENT = (“8” (~("\n' |'\r' }}*) : { _channel = HIDDEN; };

0o~ Oy U

Neuron = “neuron” StringlLiteral (Block)* EOF;

10 Block = StringLiteral ':' (Assignment | Declaration)* “end”;
11 Assignment = StringLiteral '=' Expression;

12 Declaration = StringlLiteral Type ('=' Expression)?;

13 Type = “integer” | “boolean” | “string”; reuse MontiCore token definitions
14 Expression = simpleExpression from de.monticore.literals.Literals

15 | Expression (times:'*'|div:'/') Expression

16 | Expression (plus:'+' |minus:'-'} Expression;

17 SimpleExpression = StringLiteral | BooleanLiteral | NumericLiteral;
18}

Figure 6.2: Grammar definition, cf. Figure 3.3, adapted to MontiCore syntax.

will show in section 6.2, the later on generated AST classes can be partially manipulated
by providing additional details in the grammar, e.g., stating names of a grammar rule’s
component.

A read-in grammar is first checked for syntactical and semantical correctness. For this
purpose, MontiCore parses the DSL-defining grammar and subsequently checks its seman-
tical correctness by means of a symbol table and a set of context conditions, cf. section 2.1.
MontiCore implements a wide range of semantical context rules a grammar has to fulfill to
be regarded as being correct: From basic checks, e.g., requiring that the grammar’s name
has to be introduced by an upper-case letter, to more complex requirements, e.g., that
all referenced grammar rules are defined. All context conditions as well as MontiCore’s
grammar parser are hereby completely target platform-agnostic and therefore decoupled
from the artifacts-generating backend of the language workbench.

If a handed over grammar is well defined and all referenced super-grammars are avail-
able, an internal representation is created for further processing. This representation is
stored as a textual class diagram of the corresponding grammar. A class diagram con-
sists of class definitions for each individual production stated in the source grammar, cf.
Figure 6.3. For each part of a grammar rule, e.g., a marker such as the plus symbol, a
respective attribute is added to the grammar rule’s class. Subsequently, MontiCore fur-
ther enriches the textual class diagram with additional methods. For each attribute, a
data retrieval and manipulation method is added. Other methods as often required in
a DSL toolchain, e.g., equality and toString operations, are constructed according to the
grammar rule and added to the class diagram. The result is a class diagram containing all
elements required for the further on introduced code generation of DSL components. Due
to MontiCore’s underlying platform, all references and types stated in the class diagram
are denoted by concepts of Java.

A modified class diagram is handed over to the final step, namely the generation of the

75

CHAPTER 6 THE MONTICORE LANGUAGE WORKBENCH

Expression = simpleExpression | Expression {times:'*'|div:'/') Expression | Expression {plus:'+'| minus:'-') Expression; Mc ﬁ
1

each grammar rule
represented by a class

classdiagram PyNestML{ references to other grammar rule classes

cON

[~>public class ASTExpression{
protected Optional<de.monticore.PyNestML.ASTSimpleExpression> simpleExpression;
protected java.util.List<de.monticore PyNestML.ASTExpression> expression;
protected Optional<String> times;
protected Optional<String> div;
protected Optional<String> plus;
protected Optional<String> minus;

terminals stored by their
token text

.}.

Figure 6.3: From grammar to class diagram: For each rule in the read-in grammar a new
class definition is created. Terminals are stored by their text, non-terminals
by references to sub-rule classes.

corresponding platform-specific code. Here, MontiCore performs a model to text transfor-
mation [Sch12] and generates the class diagram in a target-specific format. Based on the
selected target platform, a different backend subsystem is selected and further used for
code generation. Each backend hereby inspects the given class diagram as well as the read-
in grammar and generates a set of components, amongst others all required AST classes, a
base visitor class, and a partially generated symbol table subsystem. All imports stated in
the initial grammar are resolved and added to the internal representation of the grammar
before it is used to generate the respective lexer and parser implementation. Figure 6.4
illustrates how a class definition in the class diagram is used to generate a respective AST
class. The processing of a source grammar terminates after all DSL components have been
generated.

MontiCore’s workflow is hereby controlled by a user-supplied groovy script [CHO6],
where individual steps, e.g., the generation of a symbol table component, can be deac-
tivated if not required. Consequently, the set of generated artifacts can be parametrized
without changing the framework’s implementation. In cases where handwritten code has
to be injected, MontiCore features the concept of generated top classes [RH17]. When-
ever handwritten code has been handed over, the framework checks whether artifacts with
equivalent names are part of the generated components. In this case, an abstract top class,
e.g., ASTNeuronTop, is generated instead, representing a basic set of features which can
be extended by handwritten code.

6.2 Extension of MontiCore

MontiCore provides several target platforms for component generation, from imperative
languages such as Jawva, through to the scripting language JavaScript. As introduced
in chapter 1, Python was selected as the new target platform for NestML. Up to now,
MontiCore did not support this platform for code generation. However, due to Monti-
Core’s highly customizable behavior and modular structure, a possible extension to new

76

6.2 EXTENSION OF MONTICORE

classdiagram PyNestML{ cON

public class ASTExpression{
protected Optional<de.monticore.PyNestML.ASTSimpleExpression> simpleExpression;
protected java.util.List<de.monticore.PyNestML.ASTExpression> expression;
protected Optional<String> times;
protected Optional<String> div;
protected Optional<String> plus;
protected Optional<String> minus;

T

for each class generate
a Java artifact

public class ASTExpression{ Java ™
protected Optional<de.monticore.PyNestML.ASTSimpleExpression> simpleExpression;
protected java.util.List<de.monticore.PyNestML.ASTExpression> expression;
protected Optional<String> times;
protected Optional<String> div;
protected Optional<String> plus;

collection of methods protected Optional<String> minus;

added by MontiCore effective methods
public ASTExpression(...){...} ~—a
¥___) public java.util.List<de.monticore.PyNestML.ASTSimpleExpression> getSimpleExpressions(...}{...}

public boolean deepEquals(...){...}

Figure 6.4: From class diagram to code: The class diagram is enriched by methods and
classes. Subsequently, each defined class is generated to a target-specific arti-
fact, e.g., Java code.

target platforms can be achieved with proportionally tolerable effort. In this section we
will, therefore, demonstrate how the existing infrastructure has to be adjusted to support
Python as a new target platform for the generation of code and reports. As illustrated in
Figure 6.5, we will demonstrate how an adaption can be performed based on a subset of
available features, namely the lexer and parser as well as AS'T classes and visitors. In order
to exemplify this process, the working example grammar as illustrated in Figure 6.2 will be
used. The routine required to generate all remaining components of the model-processing
frontend, e.g., a symbol table infrastructure, is hereby extended analogously.

Due to the target platform-agnostic structure of the input grammar format, no modifi-
cations to MontiCore’s grammar definition language are required whenever a new target
for code generation is added. Consequently, the parsing of the grammar does not have to
be modified, but can be used in a black-box manner. Regardless of the selected target
platform, a given grammar always has to follow the same set of rules, e.g., that all refer-
enced productions are defined. Thus, the context conditions each processed grammar has
to fulfill can be reused without altering their behavior. All this results from MontiCore’s
strict decoupling of the frontend, transformation and backend subsystems. Changes to the
code-generating backend do not affect the frontend. In conclusion no modifications to the
grammar-parsing frontend are required to support a different platform for code generation.

As introduced in section 6.1, MontiCore stores a parsed grammar artifact by means of a
textual class diagram. This approach to store a grammar features two major advantages:
On the one hand, a grammar class diagram is mostly programming language-agnostic. All
types and references are of basic nature, i.e., either references to other rules, or primitive
types and collections of such. On the other hand, by utilizing such an internal repre-
sentation of the grammar’s structure, it is easily possible to adjust or extend it by new

77

CHAPTER 6 THE MONTICORE LANGUAGE WORKBENCH

Templates Artifacts
A A

| _Sscreates>> 1
Template b e
<<conforms>> <<reads>> <<instantiates>> Engine [___ :
rms>> Model |e---{----<¥eadszz___ Parser [-SSfSRELLTAS :
!

H
4 H
H 1
S iaipieyiivii GPL Language
<<generates>> i (AST (€= €-----1= guag
ety == Nogiass Helpers Frontend
MontiCore |Jccgenerates>> __,| Meta] I x .
LWB Model |<<conforms>>| i i '
, Plocgenerates?> | temmeemg - : Context ;-_-_-_- ____________________ : i
i i i Conditions fg--mmmmmmaaamn)
' : H
H
H

--> DSL Grammar % Visitors F--------n=- d % S}I/'an;?:I PR | E
Demonstrated A :

Extension

Figure 6.5: Demonstrated extensions to MontiCore: Representing a foundation of the
model-processing frontend, the demonstrated extension enables MontiCore to
generate all components required to parse and interact with textual models in
Python.

properties, an approach similar to the concept of modifiable ASTs as introduced in sec-
tion 2.1. Those modifications are implemented by decorators which inspect a class diagram
and extend ("decorate”) them with additional methods, attributes and classes. Although
almost all targets for code generation share a kernel of required functionality, e.g., data
retrieval operations, often target platform-specific functions such as an overwritten __str_-
_ operation have to be added to the generated components. For this purpose each target
for code generation has to feature a dedicated Decorator class which adds all required
functionality to the grammar’s class diagram. In our use case, it is necessary to create
a new Python-specific class diagram decorator, which inspects a class diagram and ex-
tends it by additional methods. We therefore implemented the new PythonCdDecorator
class which encapsulates all required routines on a given textual class diagram. However,
given Python’s overall paradigm of an interpreted language and the concept of duck typing
[van95], it is not possible to provide all concepts as existing in Java in the generated Python
components. Therefore, while all data access and modification methods were successfully
ported, other specifications, e.g., the declaration of packages to which a module belongs
to, could not be migrated, due to Python’s different handling of modules. Moreover, while
Java provides an approach to specify the access modifier, i.e., which elements are available
in which scopes, making it an inherent part of the language itself, Python transfers this
responsibility to the client and its disciplined usage of correct access paths.

The process as executed by the PythonCdDecorator class can be subsumed as follows:
For each available class in the class diagram, inspect all declared attributes. Based on the
type of the attribute, add new access and modification operations to the class diagram.
Here, MontiCore utilizes the concept of hook points [RH17], i.e., specified locations in the
textual class diagram where additional declarations can be injected. For this purpose,
MontiCore first adds method headers? to the classes stored in the class diagram by means
of the addAdditionalMethods operation. Each added method header introduces a new

%e.g., public Optional<de.monticore. PyNestML.ASTEzpression> getASTEzpression();

78

6.2 EXTENSION OF MONTICORE

1.define header of added method
String header = "public " + TypesPrinter.printType(attribute.getType()) + " get" + attribute.getName()+ "();" ;

HookPoint getMethodBody = new TemplateHookPoint("ast_python.additionalmethods.Get", clazz, attribute.getName());

2. attach generating template to placeholder
replaceMethodBodyTemplate(clazz, header, getMethodBody);

— 3 inject method definition into class diagram

OOV R WN

Figure 6.6: Method injection in class diagrams: The class diagram decorator first creates a
new method header. Subsequently, a new hook point is created and a template
as used to generate the method body is attached. Finally, the method header
as well as the hook point are injected into the class diagram.

hook point for a method body. For each created hook point, the addAdditionalMethods
operation subsequently indicates which template has to be used to generate the content of
the respective method body. MontiCore, therefore, replaces method body placeholders as
added together with a new method by a concrete instruction which template has to be used
to generate the content. Figure 6.6 illustrates the routine executed to add a getter method
to the processed class diagram. In order to support all required methods, we implemented
an adjusted version of the addAdditionalMethods operation which adds a set of method
headers together with concrete instructions for the corresponding method bodies. By
utilizing the new decorator, MontiCore extends a class diagram by data retrieval and
modification operations, equality checks as well as operations to clone a given node. New
classes, e.g., the ASTNodeFactory as used to create new AST nodes, are added to the class
diagram by the same principle. Here, hook points are coupled to the class signature instead
of a method header. Analogously to the functionality implemented in the existing Java
artifact generator, the implemented Python-specific decorator extends a class diagram by
a Factory class [VHJGY95] as a central point for node construction, as well as a Builder
class [VHJGO95] for the creation of complex objects. The result is a class diagram where
several methods and classes have been added by MontiCore.

In most cases, different target platforms utilize a different set of keywords to denote
certain concepts. For instance, while Java indicates alternatives by the else-if directive,
Python employs elif to instruct such behavior. These differences in possible targets have
to be handled in order to avoid namespace collisions of generated code and concepts in the
respective target platform. Depending on the selected target platform, it is therefore re-
quired to implement a new NamesHelper class which provides a routine to avoid namespace
collisions. To avoid a collision with keywords reserved in Python, the PythonNamesHelper
class was implemented. If a given class diagram contains an element whose name collides
with a keyword in Python, the routine implemented in the PythonNamesHelper prefixes
the name with r_. For instance, in the case that a given rule in the grammar has been
named elif, the corresponding node creating method of the generated ASTNodeFactory
class references to r_elif. This procedure ensures that the generated components are com-
pilable and semantically correct.

Having an extended class diagram, MontiCore utilizes it to generate all DSL components
in a target-specific format. The templates used to determine this format are therefore the
second component which has to be adjusted to support Python as a new target plat-

79

CHAPTER 6 THE MONTICORE LANGUAGE WORKBENCH

: 19 genraedby el Pyhon
2 class ${ast.getName()}{${genHelper.getSuperClassesAsString{ast)}): 2 class- ASTSlmpIeExpreSS|on(ASTNode):
3 <#if genHelper.isAbstract(ast)> 3 stringliteral = none
4 4 booleanLiteral = none
5 metaclass__ = ABCMeta 5 numericliteral = none
o - use Python concepts 5
6 <fif> f object-orientation
7 oT objeci-orientario 7 def __init__(self, stringLiteral, booleanLiteral, numericLiteral):
8 <#-- generate all attributes --> utilize Python-specific 8 super(ﬁ_\STS_imple_Expr_essit_)n, self).__init__()
9 <#list ast.getCDAttributes() as attribute> sub-templates 9 self.strmgute-ral = strmguteraI-
10 <#if IgenHelper.isinherited(attribute)> 10 self.booleanliteral = booleanLiteral
11 ${tc.includeArgs("ast_python.Attributé", [attribute, ast])} 11 self.numericLiteral = numericLiteral
12 </#if> 12
13 N7 preserve correct indentation and syntax 13 def getStringLiteral(self):

14

Figure 6.7: Template and result: A freemarker [frel7] template as used to generate an AST
class. Comment tags as well as keywords of Python are integrated. Correct
indentation in the template ensures syntactical correctness of the generated
code. Adequate counter pieces for object-orientation in Python, e.g., the meta-
class notation for abstract classes, are utilized.

form. Here, one of the key difference between Python and other target platforms has
to be regarded, namely the notation employed to separate individual statements. While
Java utilizes brackets to mark the beginning and end of a unit and disregards indentation
and comments, Python focuses on indentation as a means to specify those properties. In
order to adhere to this requirement, we designed all templates to preserve a correct in-
dentation as well as an appropriate usage of keywords and tags, cf. Figure 6.7. For each
class in the class diagram, the implemented AstPythonGenerator class therefore generates
a respective Python artifact. As previously mentioned, the grammar’s class diagram is
enriched by new properties by means of decorators. Some of these specifications injected
into all classes in the diagram, e.g., variables which are used to store comments, require
additional dependencies to remain valid. Up to now, all runtime environment dependen-
cies have been resolved from within MontiCore, i.e., whenever one of the dependencies was
required in the generated code, the corresponding module was simply imported from Mon-
tiCore. However, due to the circumstance that MontiCore is not available in Python, it
is not possible to import those specifications into the generated project by downloading a
specific library or framework. To solve this problem, parts of the runtime environment are
generated together with the remaining DSL-specific components. Consequently, we imple-
mented three additional templates to preserve consistency of generated Python code: The
Comment class template is used to generate a component employed to store comments
of a model, while the SourcePosition class template is responsible for the generation of
a component which summarizes commonly required operations on source positions. The
generated ASTNode class represents a base class of all AST classes and contains general
operations and properties as common in all AST nodes, e.g., a comment field. Figure 6.8
illustrates the generated dependencies.

With a collection of AST classes representing a data structure for a read-in model of
the handled DSL, MontiCore proceeds to generate visitors as well as a lexer and parser.
Depending on the selected target platform, a different syntax and approach has to be
used to generate semantically correct components. The routine for the generation of these
components is therefore modified to support Python as a new platform. By means of

80

6.2 EXTENSION OF MONTICORE

|)
ASTNode Comment
[> - start, end - start, end
- precomments - text
- postcomments SourcePosition
] + equals(...)
+equals(...) + getter/setter - line, column
AST Classes + clone(...) - fileName
+ getter/setter + getDefaultSourcePos(...)

+ compareTo(...)
+ getter/setter

Figure 6.8: Generated dependencies: In order to generate code with available dependen-
cies, the featured extension generates an AST Node class representing the base
for all concrete AST classes, the Comment class used to store comments and a
SourcePosition representing a source position in the textual model in a DSL.

the generated lexer and parser, we are able to read in a model and reconstruct it as a
parse tree, cf. section 2.1. However, the parse tree misses common utilities, e.g., data
retrieval and manipulation methods, thus a set of AST classes is generated and used.
The process of retrieving details from the DSL model’s parse tree and their storage in
an AST requires a complex traversal routine on the parse tree. Luckily, the structure of
this routine can be completely derived from the source grammar. In the case of Java as
the target platform for code generation, MontiCore integrates the process of initializing
an AST from a textual model into the generated parser. In conclusion, the parser can
be used to parse a model to the corresponding parse tree or an AST. However, here a
clear single responsibility is no longer given, since two different routines are combined in a
single component. In cases where context conditions of a DSL have to be checked during
the model-parsing process, it is not directly possible to utilize a modified AST-creating
routine. The implemented extension to MontiCore therefore separates these concepts into
two different components: Lexer and parser are generated without any additional code
for the creation of an AST, while the further on introduced ASTBuilderVisitor class is
used to inspect a given parse tree and instantiate a model’s AST. A clear separation of
the model-parsing and AST-building processes results in a modular and easy to maintain
structure. Moreover, chapter 3 demonstrated that it can be beneficial to have direct access
to the parse tree, e.g., when dealing with source model comments.

MontiCore utilizes Antlr [PLWT00] by creating an intermediate representation of the
source grammar in Antlr specific syntax and subsequently generating the lexer and parser
by using Antlr’s toolchain. Moreover, in the case of Java as the target for component
generation, MontiCore injects AST-creating code into the generated parser. This behavior
has been modified and consequently no additional code is added to the generated lexer
and parser in Python. Instead, the responsibility to initialize an AST is delegated to the
ASTBuilderVisitor, which can now be used to create an AST from a given parse tree.
This approach to separate concepts enables an implementation of arbitrary operations
on the parse tree, while the abstract syntax tree can still be created by the specialized
visitor. Moreover, all components are easier to maintain and extend given the strict
separation of concerns, where the set of visitors can be easily adjusted without any need to
modify the generated lexer and parser. All modifications to MontiCore are hereby limited

81

CHAPTER 6 THE MONTICORE LANGUAGE WORKBENCH

MC

SimpleExpression = StringLiteral
| BooleanLiteral
| Numericliteral;

simpleExpression Antlr simpleExpression : stringLiteral Antlr
@init{ASTSimpleExpression _aNode = null; | booleanLiteral
_aNode = createASTSimpleExpression(); Java code for AST | numericLiteral;
: . constructioninjected ;
setActiveASTNode(_aNode);

8 _/ —
d d
stringLiteral ho code injecte

| booleanLiteral
| numericlLiteral;

Figure 6.9: From MontiCore to Antlr: Depending on the selected target for the compo-
nent generation, the source grammar is enriched by additional methods for
the construction of an AST, before it is generated to Antlr-specific grammar
format.

to the Grammar2Antlr module, where, depending on the selected target for component
generation, no code is injected into the intermediate representation of the DSL grammar
in Antlr syntax. Figure 6.9 illustrates how depending on the selected target platform
additional code is injected into the intermediate grammar, and thus the generated lexer
and parser. Consequently, all methods in the Grammar2Antir class were modified to check
which target for code generation has been selected, and inject AST-building code only if
Java has been selected as the target platform.

The generated ASTBuilderVisitor class is used to inspect a given parse tree and in-
stantiate a model-specific AST. Having a class diagram of all rules in the initial grammar,
MontiCore detects which elements are stored in a parse tree node and how these elements
have to be retrieved, cf. Figure 6.10. This information is then used to generate a visitor
which visits all available fields of a parse tree node, retrieves stored data and attaches
a new node to the current AST. The generated ASTBuilderVisitor class executes this
process for the whole model before a new AST representation of the processed model is
returned.

With a set of AST classes, a lexer and parser as well as the ASTBuilderVisitor class,
MontiCore is able to generate all DSL components required to parse a model and create the
respective AST. However, often it is of interest to parse not a complete model, but only cer-
tain parts of it, e.g., a single statement. The DSL-specific process of utilizing a new lexer,
parser and AST builder to parse such a statement is hereby always constructed similarly,
by first creating a lexer and parser to parse an element, and subsequently instantiating an
AST by the ASTBuilderVisitor. In order to simplify this model- and statement-parsing
process in the handled DSL, an additional template for code generation was designed: Ex-
ecuted during the generation of AST classes, this template generates a new Parser class,
cf. Figure 6.11. For each available production in the initial grammar, this class contains a
method encapsulating all above-mentioned steps. The generated DSL toolchain can then
interact with the model-parsing frontend by utilizing methods contained in the interface
of the generated Parser class.

As demonstrated in section 2.1, the wvisitor pattern enables us to traverse and work

82

6.2 EXTENSION OF MONTICORE

1
2

for each rule generate a visit routine

4 simpleExpression = None

11 div= ctx.div.text
12 plus = ctx.plus.text
13— minus = ctx.minus.text

17 returnret

—3>def visitExpression(self, ctx):

5> if ctx.simpleExpression is not None:
6 simpleExpression = self.visit(ctx.simpleExpression)

A visit non-terminals and

Expression = simpleExpression mc —7—> expression = list()
| Expression (times:'*'| div:'/') Expression 8 fornode in ctx.expression:
| Expression (plus:'+'|minus:'-') Expression; 9 expression.append(self.visit(node))

store as objects

10 times = ctx.times text/smre terminals as text

create new node

14 ret = ASTExpression(simpleExpression, expression, times, div, plus, minus)
15 ret.setSourcePositionStart(SourcePosition(...))
16 ret.setSourcePositionEnd(SourcePosition(...))

update source position

Python N

Figure 6.10: From class diagram to ASTBuilderVisitor: For each grammar rule, an in-
dividual parse tree visit method is generated. Terminals are retrieved from
the processed node and their text stored, while non-terminals are first visited
and the returned objects used. Finally, a new AST node is constructed and

returned.
[input is file] [input is string]
1<#list classes as class> FTL L—"
2 @classmethod Create Create
3 def parse${class.getName()}{cls, element): P (File Stream } (Input stream }

4 try: H

5 input = FileStream(element)-~~w——.____________.- ~

6 except |OError: T

7 input = InputStream{(element) __,—*"‘

8 lexer = ANtIrLeXer(iNPUt)—~cc e oo eoaocmmem====" _,—"7
10 stream = CommonTokenStream(lexer) -=aoaae_ oo occecce==""" . >
11 parser = AntlrParser(Stream)=-=-=--cccc-ccemmemcomcmnmm-==="""""

12 astBuilder = AstBuilderVisitor()
13 return astBuildervisit(parser.${class.getName()}())-=-----m-m=""""""
14 </#list>

Token Stream
Token Stream J rule]

AST

@

[incorrect token]

Figure 6.11: The Parser class: For each rule in the grammar, a new parse method is
generated. This method encapsulates all steps required to parse a model and

construct the corresponding AST.

83

CHAPTER 6 THE MONTICORE LANGUAGE WORKBENCH

1 FTL
2. ' '
1 = 3 def visit(self, node): (——d—'spanher function
2 dyhamic binding 4 <#list cd.getTypes() as type> dispatch based on type
o based on type 5 <#if type.isClass() && Itype.isAbstract()>
3 <#list cd.getTypes() as type> 6 if isinstance(node, ${type}): 62
4 <#if type.isClass() && !type.isAbstract()> 7 selfvisit${type}node)
5 default public void visit(${type.getName()} node){} 9 </tif></Hlist> delegate o monomorphic
g </#|<if:;f> bolymorph func’riﬂ/ 10 .. . hook functions
11 <#list cd.getTypes() as type>

by overioading

9 12 def visit${type.getName()}{self, node):

13 pass
14 </#list>

Figure 6.12: Generated Java and Python visitor: Python as the new target for code gen-
eration does not provide the concept of method overloading. In order to solve
this problem, an intermediate wisit dispatcher method is generated which
delegates according to the type of the handed over instance. Java supports
ad-hoc polymorphism, thus no dispatcher method is required.

on a given AST. MontiCore features all required components to generate a base visitor
implementation for a read-in model and its respective AST classes, where only the concrete
operations on the AS'T have to be specified by handwritten code. We, therefore, conclude
the set of implemented extensions to MontiCore by the PythonVisitorGenerator class
whose routines inspect a grammar class diagram and retrieve all classes which are neither
static nor abstract, thus can be used to create concrete objects during the model processing
in the generated DSL toolchain. These classes are then utilized to generate a base visitor
class which implements a traversal strategy with a placeholder for concrete operations on
the AST. Utilizing the template method pattern [VHJG95], arbitrary operations on the
AST can then be implemented. The generation of such a visitor prevents the error-prone
writing of a routine whose size grows proportionally to the number of AST classes and
attributes. Due to Python’s missing concept of declared types and function overloading,
it is not possible to use ad-hoc polymorphism [Car85] in the generated code to dispatch a
visit routine invocation according to the handed over type. Consequently, the generated
visitor class features only a single wvisit method. This routine checks the type of the
handed over AST node and dispatches the call to the correct operation. The respective
operation is hereby named uniquely based on the visited node, e.g., visitASTDeclaration,
in order to avoid clashes with other methods. We therefore avoid the unavailable function
overloading in Python by utilizing a monomorph approach. Figure 6.12 briefly compares
the generated base visitors as used in Java and Python. Together with the model-parsing
process encapsulated in the Parser class, the generated base visitor enables a DSL-specific
toolchain to parse and interact with a textual model.

In conclusion, we see how MontiCore implements a complex processing of a DSL’s gram-
mar, with the result being several generated components as required in a DSL toolchain.
Moreover, we also see that only a small set of MontiCore’s processes has to be adjusted to
support a new target platform for code generation. Besides the presented elements, Monti-
Core also features a concept for the generation of several additional components, among
others a symbol table and basic context conditions. Here, one of the main problems pre-

84

6.2 EXTENSION OF MONTICORE

venting an easy to achieve extension to a new target platform for code generation is the
dependency of the generated code to libraries and components which are only available
in Java. In order to support the generation of such components, it would be necessary
to migrate a vast collection of classes and libraries to Python (or any other target plat-
form). Future work may, therefore, focus on an extension of MontiCore which generates
self-contained code without any external dependencies, or an evaluation of existing tech-
nologies in respective languages which can be used as counter pieces to the existing Java
infrastructure.

We conclude this section by a brief discussion on code generation in the concrete use
case of PyNestML. As demonstrated, we were able to generate several DSL-specific com-
ponents as required in the model-processing frontend: A lexer and parser used to parse the
model to a parse tree, a collection of AST classes, and finally a basic as well as an AST-
building visitor. All these components share a commonality, namely the fact that they
have to be rewritten whenever changes to the underlying DSL grammar are implemented.
Especially in the case of visitors which implement a routine which is simple by itself, but
also consists of a massive codebase, code generation can be beneficial. Analogously, AST
classes are always constructed in the same manner, with their basic schema being com-
pletely stated in the source grammar. In both cases a generation of components can be
beneficial whenever the DSL is often modified. However, in the case of the symbol table
and symbols, an automated code generation is only partially applicable. Although Mon-
tiCore is able to generate the basic symbol classes, it is still not directly comprehensible
which components in the grammar correspond to symbols, and which to scopes. Here, it
would be necessary to extend MontiCore with an annotation concept which indicates that
certain symbol classes have to be created. Handwritten solutions are therefore the better
options since the underlying concept of a symbol table and concrete symbols of a handled
DSL do not change often. The same reasoning applies to context conditions [Sch12]. Here,
code generation is almost impossible. Context conditions often embody domain-specific
knowledge whose description is mostly provided in a textual form. Thus, an automated
generation is limited. A possible approach here could be the usage of formal constraint
specification languages such as the Object Constraint Language (OCL, [Gog09]). By an-
notating conditions in the grammar, e.g., stating that at most one block of a certain type
can be declared in a target model, it would be possible to automatically generate a basic
collection of context conditions. However, specific and complex context conditions still
have to be written by hand, making manual writing of code inevitable. Nonetheless, the
above-introduced extension to MontiCore enables us to generate well-defined components
of the model-processing frontend, and therefore to reduce the overall required effort during
the reengineering as well as extension process.

85

Chapter 7
Tutorial

The installation as well as the execution of PyNestML requires a Python installation
in version of at least 2.6, or 3 in an arbitrary subversion. All required dependencies
of PyNestML are collected in requirements.tzt and can be installed via Python’s package
management system pip [pyt17a] with the following command on Linux as well as Windows
operating systems:

$ pip install —r requirements.txt

After the installation of all dependencies has been finished, it is necessary to execute the
setup:

$ python setup.py install ——user

If no errors were detected, the processing of models can be started by:

$ python PyNestML.py [ARGUMENTS]

where the arguments are:

87

CHAPTER 7 TUTORIAL

Argument ‘ Description
-h Show a message with all available arguments.
-path [PATH] Set the path to a single model or a directory containing models.
-target [PATH] (Optional) Set the output directory.
Default: {current-dir}/target.
-dry (Optional) Execute a dry run where models are only analyzed but

not generated to target format. Default: Off.

-logging level [LEVEL] | (Optional) Indicate the severity of messages which shall be printed

to the log. Available: {INFO,WARNING,ERROR,NO}, being
more restrictive from left to right. Default: ERROR.

-module_name [NAME] | (Optional) The name of the overall module as used to install gen-

erated code. Default: Name of directory containing the models.

-store_log (Optional) Indicate that a log file in JSON format contain-
ing all printed messages should be stored in the target path.

Default: Off.

-dev (Optional) Execute the toolchain in developer mode where arti-

facts are generated even if correctness can not be guaranteed.

Default: Off.

A default execution of the toolchain can, therefore, be initiated by:

$ python PyNestML.py —path PATH\TO\MODELS

Figure 7.1 demonstrates the command line output of a successful and unsuccessful execu-
tion of PyNestML.

[1,GLOBAL, INFO, START_PROCESSING_FILE]:
Start processing '/home/nest/pynestml/models/izhikevich.nestml’ /

[12,izhikevich_neuron, INFO, CODE_SUCCESSFULLY_GENERATED]:
Successfully generated NEST code for the neuron: 'izhikevich_neuron' in: '/home/nest/pynestml/target/models’

[1,GLOBAL, INFO, START_PROCESSING_FILE]:
Start processing '/home/nest/pynestml/models/izhikevich.nestml’

[3,izhikevich_neuron, ERROR, CAST_NOT_POSSIBLE, [45:5;45:25]]:
Type of lhs 'hasSpiked' does not correspond to rhs '0'! LHS: 'boolean’, RHS: 'integer’.

[7,izhikevich_neuron, INFO, NEURON_CONTAINS_ERRORS]:
Neuron 'izhikevich_neuron' contains errors. No code generated!

Figure 7.1: A successful and unsuccessful execution of PyNestML.

If no critical errors were detected, a new directory target is created containing all gener-
ated artifacts, cf. section 4.1. Among others, a cmake file [gnul7] is attached which enables
the integration of the generated artifacts into the NEST ecosystem. The integration can
hereby be invoked by:

88

$ cmake —Dwith—nest=<nest_install_dir>/bin/nest—config .
$ make
$ make install

For a detailed overview of commands and interaction possibilities with NEST, we refer to
the official documentation [GMP13, NES17].

89

Chapter 8
Conclusion and Future Work

We conclude this report by a brief overview of the achieved results and an outlook to future
work. Chapter 1 gave a short introduction to the scope of this report and which problems
it tackles, namely the reimplementation of an existing neuroscientific framework for the
modeling of spiking point neurons. For a basic understanding of the matter, section 2.1 first
introduced the concept of domain-specific modeling languages and outlined all required
components. Section 2.2 summarized the results of a short survey conducted to find
the most suitable components for reuse in PyNestML. Here, Antlr was selected as the
lexer and parser generator, while the task of handling physical units was delegated to the
AstroPy unit system. This chapter also briefly demonstrated three generator engines and
underlined their similarities.

Chapter 3 subsequently introduced the model-processing frontend of PyNestML and
illustrated all conducted reengineering steps. To this end, section 3.1 showed how a gram-
mar artifact represents the starting point of PyNestML and denotes all concepts of the
implemented language. By using Antlr, the respective lexer and parser components were
generated. Due to the insufficient nature of the instantiated parse tree, a set of AST classes
was introduced. Coupling a data structure with common utility, these classes are used by
the ASTBuilderVisitor to initialize an AST representation of a textual model. The task of
collecting all source comments is delegated to the CommentCollectorVisitor class. Section
3.2 introduced a data structure for storage of context-related details, namely the Symbol
classes. Together with the predefined subsystem, these components enable PyNestML to
store a set of predefined types, variables and functions. Model types are hereby derived
by the ASTFExpressionsTypeVisitor and the ASTUnitTypeVisitor classes. Utilizing these
components, section 3.3 introduced a subsystem for semantical checks. The SymbolTable
class is hereby used to store the context of a processed model, while the ASTSymbolTable-
Visitor is responsible for collecting all required details. A set of context conditions finally
ensures that semantically incorrect models are filtered out. This chapter was concluded
in section 3.4 with an overview of assisting classes. The overall interface to PyNestML is
encapsulated in the PyNestMLFront class, while the Logger class implements an easy to
use logging concept. This section also introduced the higher-order visitor, an extension to
the visitor concept which avoids unnecessary sub-classing in many cases.

Based on the results from the previous chapter, chapter 4 demonstrated the NEST
code generator. The coordinating NestCodeGenerator class takes care of all processes
necessary to generate C++ code and delegates individual steps to assisting subsystems.
Here, the SymPySolver class is used to interact with the ODE-toolbox by Blundell et al.
The computed AST-to-AST transformations are subsequently integrated into the AST by
the EquationsBlockProcessor, before a set of templates is used to generate the respective

91

CHAPTER 8 CONCLUSION AND FUTURE WORK

C++ code. This chapter also showed how different syntaxes can be integrated into a single
target artifact by means of the EzpressionPrettyPrinter class. Especially the composable
nature of the pretty printer and the reference converters was demonstrated, making the
implementation of new targets for code generation an easy to achieve task. This chapter
also gave a reasoning why a coupling of code generation and AST-to-AST transformations
makes sense in environments where several target platforms are — or shall be — supported.

In order to demonstrate how the provided implementation of PyNestML can be ex-
tended, chapter 5 introduced three typical use cases. Section 5.1 illustrated how the
model-processing frontend has to be adapted to support new productions in the grammar,
while section 5.2 outlined all required steps to implement new semantical checks. Section
5.3 showed how additional templates can be integrated into code generation. However, an
error-prone implementation of these extensions by hand can usually be avoided by utiliz-
ing appropriate tools. For this purpose, chapter 6 introduced the state-of-the-art language
workbench MontiCore. This chapter showed which components of MontiCore have to be
extended to support Python as a new platform for code generation. Chapter 7 concluded
the report with a short tutorial on how to use PyNestML.

With Python as the new platform, an integration of PyNestML into neuroscientific
ecosystems, e.g., other tools and frameworks, can be easily conducted. Moreover, bridge
technologies were made obsolete, making the setup and usage of PyNestML easy to achieve.
Future work may, therefore, focus on an extension of the existing framework by new func-
tionality. The underlying DSL can be enriched by new concepts and approaches for spec-
ifying entities as often required in neuroscientific simulations, e.g., synapses or topologies
of neurons. By adding support for new target platforms such as SpiNNaker [FGTP14],
Neuron [CHO6] or LEMS [CGC™14], a wider user base can be included, while the exchange
and validation of neuron models is no longer hindered by a manual transformation process.

With the continuing rise of computational power, new and more complex simulations
become possible. More sophisticated modeling approaches will, therefore, be required to
provide appropriate scalability while being able to capture all details. Here, (Py)NestML
provides a good foundation for future work. Concluding with a quote by Harriett Jackson
Brown Jr.:

The best preparation for tomorrow is doing your best today.

92

Chapter 9
PyNestML Grammar

grammar PyNESTML{

token SL_COMMENT =
(# (CC\n’ \r’))x) : { self._channel=2;};

token ML_COMMENT =
(77/*77 *? 77*/77 | ”\77\77\”77 *? ’7\77\77\”77) . {Self 7Chann61:2;};

token NEWLINE =
C\r> \n’ | \r’ | \n’): {self._channel=3; };

token WS =
7] \t?) { self._channel=1; };

token LINE_ESCAPE =
A\ \r’? \n’:{ self._channel=1; };

token BLOCK_OPEN = "’;
token BLOCK_CLOSE = "end”;

token BOOLEAN_LITERAL =
“true” | "True” | "false” | "False”;

token STRING_LITERAL =

9999 (7a 7..’ Z’|)A7..7 Z) | 77’ | ’$’)

(7a 7“7 Z’| 7A’“?Z7 | ’77 | ’07..79’ | 7$’)* ’77’;
token NAME =

(7a ’..7 Z 7‘7 A".7Z’ ‘ 777 ‘ 7$’)

(7a 7..7 Z 7‘7 A’..7Z’ ‘ 777 ‘ 707..’97 | ’$7)*;

token INTEGER = NON_ZERO_INTEGER | '0";
fragment token NON_ZERO_INTEGER = '1"..'9" (0°..79")x;
token FLOAT = POINT_FLOAT | EXPONENT_FLOAT;

fragment token POINT_FLOAT = (NON_ZERO_INTEGER ['0")? FRACTION
| (NON_ZERO_INTEGER [|'0°) .";

93

CHAPTER 9 PYNESTML GRAMMAR

94

fragment token EXPONENT_FLOAT =
(NON_ZERO_INTEGER | POINT_FLOAT) EXPONENT ;

fragment token EXPONENT =
(’e’’E) ('+|’=")? (NON_ZERO_INTEGER |0’);

fragment token FRACTION =" (°0°..79°)+;

/*******************>x<*********************************

* NestML—Language
sk sk skksk sk kR Rk Rk kokok [

NestmlCompilationUnit = (Neuron | NEWLINE)« EOF;
Neuron = "neuron” NAME Body;

Body = BLOCK_OPEN
(NEWLINE | BlockWithVariables | UpdateBlock |
EquationsBlock | InputBlock | OutputBlock | Function)x*
BLOCK_CLOSE;

BlockWithVariables =
(isState :” state ”| isParameters:”parameters
isInternals :” internals | isInits :” initial values ”)?
BLOCK_OPEN
(Declaration | NEWLINE)x

BLOCK_CLOSE;

77|

UpdateBlock = "update” BLOCK_OPEN
Block
BLOCK_CLOSE;

EquationsBlock = "equations” BLOCK_OPEN
(OdeFunction|OdeEquation|OdeShape NEWLINE)+
BLOCK_CLOSE;

InputBlock = "input” BLOCK_OPEN
(InputLine | NEWLINE)x
BLOCK_CLOSE;

InputLine =
name:NAME
(’[” sizeParameter:NAME ”]")?
(Datatype)?
"< =7 InputTypesx
(isCurrent:”current” | isSpike :”spike ”);

InputType = (isInhibitory:”inhibitory” |
isExcitatory :” excitatory ”);

OutputBlock = "output” BLOCK_OPEN
(isSpike :”spike” | isCurrent:”current”) ;

Function = "function” NAME ”

” N

(” (Parameter (”,” Parameter)x)? ”)” (returnType:Datatype)?

BLOCK_OPEN
Block
BLOCK_CLOSE;

Parameter = NAME Datatype;

[k sk kR kR kR sk kR kSRR SRSRSR RS
* Units—Language
ook kR Rk kR Rk kR Rk kR Rk [

Datatype = isInt:”integer”
| isReal:”real”
| isString :” string”
| isBool:"boolean”
| isVoid :"void”
| unit:UnitType;

UnitType = leftParentheses:”(”
compoundUnit:UnitType rightParentheses:”)”
| base:UnitType powOp:"*x” exponent:INTEGER
| left :UnitType (timesOp:"+” | divOp:”/”) right:UnitType
| unitlessLiteral :INTEGER divOp:”/” right:UnitType
| unit:NAME;

[k okoRR Rk kR Rk kR Rk kR ko
* Expressions—Language
stk sk kot Rk sk sk sttt Rk sk sk ot sk sk sk stk ko |/

Expression =
leftParentheses: ”(” term:Expression rightParentheses:”)”
| <rightassoc> left:Expression powOp:"**” right:Expression
| UnaryOperator term:Expression
| left :Expression (timesOp:"«” | divOp:”/” | moduloOp:"%”)
right : Expression
| left :Expression (plusOp:"+” | minusOp:”—")
right : Expression
| left : Expression BitOperator right:Expression
| left : Expression ComparisonOperator right:Expression
| logicalNot:"not” term:Expression
| left :Expression LogicalOperator right:Expression
| condition:Expression 7?” ifTrue:Expression ”:”
ifNot : Expression
| SimpleExpression

)

SimpleExpression = FunctionCall

95

CHAPTER 9 PYNESTML GRAMMAR

96

| BOOLEAN_LITERAL // true & false;
| (INTEGER|FLOAT) (Variable)?

| string:STRING_LITERAL

| isInf:”inf”

| Variable;

UnaryOperator = (unaryPlus:”+”|unaryMinus:”—"|unaryTilde:”””);

BitOperator = (bitAnd:"&”| bitXor:""” |
bitOr ”” | bitShiftLeft "< <" |
bitShiftRight:">>");

ComparisonOperator = (1t:"<” | le:"<=" | eq:"=="|
ne:77!277 | n62:77<>77 | ge:”>:’7 |
gt :77>77);

LogicalOperator = (logicalAnd:”and” | logicalOr:”or”);
Variable = name:NAME (DifferentialOrder)x;
DifferentialOrder = "\’

FunctionCall = calleeName:NAME
7(” (Expression (7,7 Expression)x)? 7)”;

/***
*x Equations—Language
sk kkkk kR sk Rk Rk R kR kR kokok [

OdeFunction = (recordable:"recordable”)? "function”
variableName:NAME Datatype "=" Expression (”;”)?;

OdeEquation = lhs:Variable ”=" rhs:Expression (”;”)?;

OdeShape = ”shape” lhs:Variable ”=" rhs:Expression (7;")7;
/***
* Procedural—Language

sk kR sk sk Rk Rk Rk Rk sk okok [

Block = (Stmt | NEWLINE)x;
Stmt = SmallStmt | CompoundStmt;
CompoundStmt = IfStmt

| ForStmt

| WhileStmt;
SmallStmt = Assignment

| FunctionCall
| Declaration

| ReturnStmt;

Assignment = lhsVariable: Variable
(direct Assignment:”"=""|
compoundSum:"+=""|
compoundMinus:”—=" |
compoundProduct:"+=""|
compoundQuotient:”/=") Expression;

Declaration =
(isRecordable:"recordable”)? (isFunction:”function”)?
Variable (”,” Variable)x Datatype
(’[" sizeParameter:NAME]”)?
("=" rhs:Expression)?
(’[[” invariant : Expression ”]]”)7;

ReturnStmt = "return” Expression?;
IfStmt = IfClause
ElifClausesx
(ElseClause)?
BLOCK_CLOSE;

IfClause = "if” Expression BLOCK_OPEN Block;

ElifClause = ”elif” Expression BLOCK_OPEN Block;

ElseClause = ”else” BLOCK_OPEN Block;

ForStmt = "for” var:NAME ”"in” startFrom:Expression ”...”
endAt:Expression "step” step:SignedNumericLiteral
BLOCK_OPEN

Block
BLOCK_CLOSE;
WhileStmt = "while” Expression BLOCK_OPEN Block BLOCK_CLOSE;

SignedNumericLiteral = (negative:”—"?) (INTEGER|FLOAT);

97

Bibliography

[AEM™16]

[AGHO0]

[And03]

[ART13]

[Bec03]

[BHS07]

[Ble05]

[BPEM18]

[BWs4]

Katrin Amunts, Christoph Ebell, Jeff Muller, Martin Telefont, Alois Knoll,
and Thomas Lippert. The Human Brain Project: Creating a European re-
search infrastructure to decode the human brain. Neuron, 92(3):574-581,
2016.

Ken Arnold, James Gosling, and David Holmes. The Java Programming
Language. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
3rd edition, 2000.

Alex M Andrew. Spiking neuron models: Single neurons, populations, plas-
ticity. Kybernetes, 32(7/8), 2003.

Astropy Collaboration, T. P. Robitaille, E. J. Tollerud, P. Greenfield,
M. Droettboom, E. Bray, T. Aldcroft, M. Davis, A. Ginsburg, A. M. Price-
Whelan, W. E. Kerzendorf, A. Conley, N. Crighton, K. Barbary, D. Muna,
H. Ferguson, F. Grollier, M. M. Parikh, P. H. Nair, H. M. Unther, C. Deil,
J. Woillez, S. Conseil, R. Kramer, J. E. H. Turner, L. Singer, R. Fox, B. A.
Weaver, V. Zabalza, Z. 1. Edwards, K. Azalee Bostroem, D. J. Burke, A. R.
Casey, S. M. Crawford, N. Dencheva, J. Ely, T. Jenness, K. Labrie, P. L. Lim,
F. Pierfederici, A. Pontzen, A. Ptak, B. Refsdal, M. Servillat, and O. Stre-
icher. Astropy: A community Python package for astronomy. 558:A33,
October 2013.

Kent Beck. Test-driven development: by example. Addison-Wesley Profes-
sional, 2003.

Frank Buschmann, Kelvin Henney, and Douglas Schimdt. Pattern-oriented
Software Architecture: on patterns and pattern language, volume 5. John
wiley & sons, 2007.

Blech, Jan Olaf and Glesner, Sabine and Leitner, Johannes. Formal verifi-
cation of java code generation from UML models. Fujaba Days, 2005:49-56,
2005.

Inga Blundell, Dimitri Plotnikov, Jochen Martin Eppler, and Abigail Mor-
rison. Automatically selecting a suitable integration scheme for systems of
differential equations in neuron models. Frontiers in Neuroscience, 2018.

Alan Bundy and Lincoln Wallen. Context-Free Grammar, pages 22-23.
Springer Berlin Heidelberg, Berlin, Heidelberg, 1984.

99

BIBLIOGRAPHY

[Car85)]

[Car07]

[CE7]

[CECO00]

[CGC14]

[CHO6]

[chelT]

[DAO1]

[DBE*08]

[docl7]
[Dunl1]

[EHM*09)

[FFO6]

[FGTP14]

[Fow10]

100

Cardelli, Luca and Wegner, Peter. On understanding types, data abstraction,
and polymorphism. ACM Computing Surveys (CSUR), 17(4):471-523, 1985.

Ted Carnevale. NEURON simulation environment. Scholarpedia, 2(6):1378,
2007.

Anthony Clark and Andy Evans. Foundations of the Unified Modeling
Language. In Proceedigs of the 2nd Northern Formal Methods Workshop.
Springer, 1997.

Krzysztof Czarnecki, Ulrich W Eisenecker, and Krysztof Czarnecki. Gener-
ative programming: methods, tools, and applications, volume 16. Addison
Wesley Reading, 2000.

Robert C. Cannon, Padraig Gleeson, Sharon Crook, Gautham Ganapathy,
Boris Marin, Eugenio Piasini, and R. Angus Silver. Lems: a language for
expressing complex biological models in concise and hierarchical form and its
use in underpinning neuroml 2. Frontiers in Neuroinformatics, 8:79, 2014.

Nicholas T Carnevale and Michael L. Hines. The NEURON book. Cambridge
University Press, 2006.

Cheetah Template Engine, Documentation. http://pythonhosted.org/
Cheetah/users_guide/, 2017.

Peter Dayan and Laurence F Abbott. Theoretical neuroscience, volume 806.
Cambridge, MA: MIT Press, 2001.

Andrew P. Davison, Daniel Briiderle, Jochen M. Eppler, Jens Kremkow,
Eilif Miiller, Dejan Pecevski, Laurent U. Perrinet, and Pierre Yger. PyNN:
A Common Interface for Neuronal Network Simulators. Frontiers in Neu-
roinformatics, 2:3637 — 3642, 2008.

Docker Homepage and Documentation. https://www.docker.com/, 2017.

Jeff Duntemann. Assembly language step-by-step: Programming with Linuz.
John Wiley & Sons, 2011.

Jochen Eppler, Moritz Helias, Eilif Muller, Markus Diesmann, and Marc-
Oliver Gewaltig. PyNEST: a convenient interface to the NEST simulator.
Frontiers in Neuroinformatics, 2:12, 2009.

Martin Fowler and Matthew Foemmel. Continuous integration. http://
www. thoughtworks. com/ ContinuousIntegration. pdf, 122, 2006.

S. B. Furber, F. Galluppi, S. Temple, and L. A. Plana. The SpiNNaker
Project. Proceedings of the IEEE, 102(5):652-665, May 2014.

Martin Fowler. Domain-specific languages. Pearson Education, 2010.

BIBLIOGRAPHY

[frel7]

[Gam95]

[GBRO4]

[GDO7]

[GMP13]

[gnul7]

[Gog09]
[Gou09]

[Hel96)]
[Hem93]

[HHOY]

[HLP*15]

[HMSNR15]

[HNRW16]

Freemarker Homepage and Documentation. https://freemarker.apache.
org/, 2017.

Erich Gamma. Design patterns: Elements of reusable object-oriented soft-
ware. Pearson Education India, 1995.

Benjamin Geer, Mike Bayer, and Jonathan Revusky. The FreeMarker tem-
plate engine, 2004.

Marc-Oliver Gewaltig and Markus Diesmann. NEST (NEural Simulation
Tool). Scholarpedia, 2(4):1430, 2007.

Marc-Oliver Gewaltig, Abigail Morrison, and Hans Ekkehard Plesser. NEST
by Example: An Introduction to the Neural Simulation Tool NEST Version
2.6. 0. 2013.

Gnu Make Documentation. https://www.gnu.org/software/make/
manual/make.pdf, 2017.

Martin Gogolla. Object Constraint Language. Springer US, 2009.

Brian Gough. GNU scientific library reference manual. Network Theory Ltd.,
2009.

Balzert Helmut. Lehrbuch der Software-Technik, 1996.

Thomas Hemmann. Reuse approaches in software engineering and knowledge
engineering: a comparison. In Position Paper Collection of the 2nd Int.
Workshop on Software Reusability, number 93-69, 1993.

Suzana Herculano-Houzel. The human brain in numbers: a linearly scaled-up
primate brain. Frontiers in Human Neuroscience, 3:31, 2009.

Arne Haber, Markus Look, Antonio Navarro Perez, Pedram Mir Seyed
Nazari, Bernhard Rumpe, Steven Volkel, and Andreas Wortmann. Inte-
gration of heterogeneous modeling languages via extensible and composable
language components. In Model-Driven Engineering and Software Develop-
ment (MODELSWARD), 2015 3rd International Conference on, pages 19-31.
IEEE, 2015.

Katrin Holldobler, Pedram Mir Seyed Nazari, and Bernhard Rumpe. Adapt-
able symbol table management by meta modeling and generation of symbol

table infrastructures. In Proceedings of the Workshop on Domain-Specific
Modeling, pages 23-30. ACM, 2015.

Robert Heim, Pedram Mir Seyed Nazari, Bernhard Rumpe, and Andreas
Wortmann. Compositional language engineering using generated, extensible,
static type-safe visitors. In Furopean Conference on Modelling Foundations
and Applications, pages 67-82. Springer, 2016.

101

BIBLIOGRAPHY

[1zh03]

[TBW+10]

[JCMG12]

[jin17]
[Kral0]

[KRV10]

[KSJ*T00]

[LMB92]
[Lou]

[M+03]

IMAT17]
IMBD+15]
[McGO7]

[Mey02]

[MHDH13]

[moz17]

102

Eugene M Izhikevich. Simple model of spiking neurons. IEEE Transactions
on neural networks, 14(6):1569-1572, 2003.

Josh Juneau, Jim Baker, Frank Wierzbicki, Leo Soto, and Victor Ng. The
Definitive Guide to Jython: Python for the Java Platform. Apress, Berkely,
CA, USA, 1st edition, 2010.

David Joyner, Ondiej Certik, Aaron Meurer, and Brian E Granger. Open
source computer algebra systems: SymPy. ACM Communications in Com-
puter Algebra, 45(3/4):225-234, 2012.

Jinja Template Engine, Documentation. http://jinja.pocoo.org/docs/
2.10/, 2017.

Holger Krahn. MontiCore: Agile Entwicklung von domdnenspezifischen
Sprachen im Software-Engineering. Shaker, 2010.

Holger Krahn, Bernhard Rumpe, and Steven Voelkel. MontiCore: A Frame-
work for Compositional Development of Domain Specific Languages. Int. J.
Softw. Tools Technol. Transf., 12(5):353-372, September 2010.

Eric R Kandel, James H Schwartz, Thomas M Jessell, Steven A Siegelbaum,
A James Hudspeth, et al. Principles of neural science, volume 4. McGraw-hill
New York, 2000.

John R Levine, Tony Mason, and Doug Brown. Lez & yacc. O’Reilly Media,
Inc., 1992.

Kenneth C Louden. Compiler construction: Principles and practice. 1997.
PWS. Boston.

Jirgen Karl Miiller et al. The Building Block Method: Component-Based
Architectural Design for Large Software-Intensive Product Families. Uni-
versiteit van Amsterdam, Faculteit der Natuurwetenschappen, Wiskunde en
Informatica, 2003.

MATLAB. wversion 9.8 (R2017b). The MathWorks Inc., Natick, Mas-
sachusetts, 2017.

Eilif Muller, James A Bednar, Markus Diesmann, Marc-Oliver Gewaltig,
Michael Hines, and Andrew P Davison. Python in neuroscience. Frontiers
in neuroinformatics, 9, 2015.

Paul McGuire. Getting started with pyparsing. O’Reilly Media, Inc., 2007.
Bertrand Meyer. Design by contract. Prentice Hall, 2002.

Sayed Mehdi Hejazi Dehaghani and Nafiseh Hajrahimi. Which factors affect
software projects maintenance cost more? 21:63-6, 03 2013.

Mozilla Corporation Website. https://www.mozilla.org/de/, 2017.

BIBLIOGRAPHY

[MR]

[NES17]

[Nol02]

[NPRIOY]

[Par09]

[Plo18]

[PLW+00]

[PRB*16]

[pyt17a]
[pyt17b]

[RBF+05]

[Rey09]

[RH17]

[Rie96]

[Ron08]

Daniel D. McCracken and Edwin D. Reilly. Backus-Naur Form (BNF). In
Encyclopedia of Computer Science, pages 129-131. John Wiley and Sons Ltd.,
Chichester, UK.

Nest Simulator Website. http://www.nest-simulator.org/, 2017.

John Nolte. The human brain: an introduction to its functional anatomy.
2002.

Nurzhan Nurseitov, Michael Paulson, Randall Reynolds, and Clemente Izuri-
eta. Comparison of JSON and XML data interchange formats: a case study.
Caine, 2009:157-162, 2009.

Terence Parr. Language Implementation Patterns: Create Your Own
Domain-Specific and General Programming Languages. Pragmatic Bookshelf,
1st edition, 2009.

Plotnikov, Dimitri. NESTML-die domdnenspezifische Sprache fiir den NEST-
Sitmulator neuronaler Netzwerke im Human Brain Project. PhD thesis,
RWTH Aachen University, Germany, 2018.

Terence Parr, John Lilly, Peter Wells, Rick Klaren, M Illouz, J Mitchell, Scott
Stanchfield, J Coker, M Zukowski, and C Flack. ANTLR reference manual.
MageLang Institute, document version, 2(0), 2000.

Dimitri Plotnikov, Bernhard Rumpe, Inga Blundell, Tammo Ippen,
Jochen Martin Eppler, and Abigail Morrison. NESTML: a modeling lan-
guage for spiking neurons. CoRR, abs/1606.02882, 2016.

Python pip documentation. https://pip.pypa.io/en/stable/, 2017.
Python Ply documentation. http://www.dabeaz.com/ply/, 2017.

Daniel A Reed, Ruzena Bajcsy, Manuel A Fernandez, Jose-Marie Griffiths,
Randall D Mott, Jack Dongarra, Chris R Johnson, Alan S Inouye, William
Miner, Martha K Matzke, et al. Computational science: Ensuring america’s
competitiveness. Technical report, PRESIDENT’S INFORMATION TECH-
NOLOGY ADVISORY COMMITTEE ARLINGTON VA, 2005.

John C Reynolds. Theories of programming languages. Cambridge University
Press, 2009.

Bernhard Rumpe and Katrin Hoelldobler. MontiCore 5 Language Workbench
Edition 2017. http://www.se-rwth.de/, 2017.

Arthur J Riel. Object-oriented design heuristics. Addison-Wesley Publishing
Company, 1996.

Armin Ronacher. Jinja2 Documentation, 2008.

103

BIBLIOGRAPHY

[Rum11]

[Rum17]

[Sch9g]
[Sch12]

[Sch17]

[soul7]

[SSVTa]

[SSV+h]

[tenl7]

[van95]
[VDKVO00]

[VHIG95]

[Wes02]

104

Bernhard Rumpe. Modellierung mit UML, volume 2nd Edition. Springer,
2011.

Bernhard Rumpe. Agile Modeling with UML: Code Generation, Testing,
Refactoring. Springer, 2017.

Herbert Schildt. C++: the complete reference. Osborne/McGraw-Hill, 1998.

Martin Schindler. Fine Werkzeuginfrastruktur zur agilen Entwicklung mit
der UML/P, volume 11. RWTH Aachen University, Germany, 2012.

Martin Schindler. Fine Werkzeuginfrastruktur zur agilen Entwicklung mit
der UML/P. PhD thesis, RWTH Aachen University, 2017.

Sourceforge Website. https://sourceforge.net/, 2017.

Klemens Schindler Schindler, Riccardo Solmil2, Vlad VergulO, Eelco
Visser10, Kevin van der Vlist13, Guido Wachsmuth10, and Jimi van der
Woning13. The state of the art in language workbenches.

Klemens Schindlerf Schindlerf, Riccardo Solmim, Vlad Vergui, Eelco Vis-
seri, Kevin van der Vlistk, Guido Wachsmuthi, and Jimi van der Woning]l.
Evaluating and Comparing Language Workbenches.

Tenjin Template Engine, Documentation. http://www.kuwata-lab.com/
tenjin/pytenjin-users-guide.html, 2017.

Guido van Rossum. Python tutorial, April 1995.

Arie Van Deursen, Paul Klint, and Joost Visser. Domain-specific languages:
An annotated bibliography. ACM Sigplan Notices, 35(6):26-36, 2000.

John Vlissides, Richard Helm, Ralph Johnson, and Erich Gamma. Design
patterns: Elements of reusable object-oriented software. Reading: Addison-
Wesley, 49(120):11, 1995.

J. Christopher Westland. The cost of errors in software development: evi-
dence from industry. Journal of Systems and Software, 62(1):1-9, 2002.

List

1.1

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24

of Figures

Izhikevich Integrate-and-Fire Neuron Model 2
An Overview of the processing Workflow 8
The Architecture of a DSL 9
A model in the Calculator Modeling Language (CML). 10
An excerpt from the CML Grammar 11
From a Model to the Parse Tree 12
The Construction of an AST 13
Construction of a Symbol Table, 14
The code-generating Backend 15
A Comparison of Models 16
Grammarrulein Ply o 18
Grammar rules in PyParsing 18
Template Engines in Comparison 20
Overview: Model-processing Frontend 22
Overview: Lexer, Parser and AST Classes 23
Simplified Grammar oL 23
The model-parsing Processes 24
Overview: AST Classes o it e 25
From Grammar to AST Classes 26
ASTSimpleExpression method in Python 27
The CommentColletorVisitor 27
Comment-Processing Routine 28
The Symbol Subsystem 29
The Predefined Subsystem 31
Instantion of SI Units with AstroPy 32
The Type-Deriving Visitor Subsystem 34
Derivation of types in ASTDataTypenodes 35
Derivation of types in ASTExpression nodes 36
Overview of Semantical Checks 37
Symbol Resolution Process 39
AST Context-Collecting and Update 39
CoCosManager and Context Conditions 41
Simple and complex Context Conditions 44
Ovierview: Assisting Components 46
Steps of Model-Processing in PyNestML 46
The Logger and Messages Components 48
AST-manipulating Components 49

105

LisT OoF FIGURES

106

3.25
3.26

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16

5.1
5.2
9.3
5.4
9.5
5.6
5.7

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12

7.1

Visitor Pattern in Practice oo 50
The Higher-Order Visitor 50
Overview: Code-Generating Backend 54
NEST Code Generation Backend 54
Processing of a model in the NEST backend 55
Model Transformation Subsystem 56
From NestML to JSON o 56
ODE-toolbox Interaction 57
State Chart of Model Transformations 58
NESTCodeGenerator and assisting components 60
Generated artifacts L L oL 60
Templates and the generated Code 61
Context sensitive target syntax 61
ASTExpression asastringo 62
Adaption of Syntax by convertToCPPName 63
Mapping of NestML types to NEST 63
Common neuroscientific physical units 64
The conversion of physical units to NEST 64
Extending PyNestML: New Grammar Rules 67
Extending PyNestML: Modifying the AST Builder 69
Extending PyNestML: Modifying the AST Visitor 69
Extending PyNestML: Adapting the ASTSymbolTableVisitor 70
Extending PyNestML: Adding Context Conditions 71
Extending PyNestML: Extending the CoCosManager 71
Extending PyNestML: Inclusion of new Templates 72
MontiCore’s Workflow 74
MontiCore Grammar v v v vt e e e 75
MontiCore: From Grammar to Class Diagram 76
MontiCore: From Class Diagram to Code 77
MontiCore: Demonstrated Extension 78
MontiCore: Template and Hook 79
MontiCore: Template and Result 80
MontiCore: Generated Dependencies 81
MontiCore: From MontiCore to Antlr 82
MontiCore: From Class Diagram to ASTBuilder 83
MontiCore: The Parser Class 83
MontiCore: Generated Java and Python Visitor 84
Output of PyNestML 88

