000859746 001__ 859746
000859746 005__ 20210130000357.0
000859746 0247_ $$2doi$$a10.1016/j.matchemphys.2018.12.102
000859746 0247_ $$2ISSN$$a0254-0584
000859746 0247_ $$2ISSN$$a1879-3312
000859746 0247_ $$2WOS$$aWOS:000463847900047
000859746 037__ $$aFZJ-2019-00583
000859746 041__ $$aEnglish
000859746 082__ $$a530
000859746 1001_ $$00000-0001-8112-1821$$aSimonenko, Elizaveta P.$$b0$$eCorresponding author
000859746 245__ $$aA sol-gel synthesis and gas-sensing properties of finely dispersed ZrTiO4
000859746 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2019
000859746 3367_ $$2DRIVER$$aarticle
000859746 3367_ $$2DataCite$$aOutput Types/Journal article
000859746 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1548234847_14341
000859746 3367_ $$2BibTeX$$aARTICLE
000859746 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000859746 3367_ $$00$$2EndNote$$aJournal Article
000859746 520__ $$aThe transparent titanium-zirconium-containing gel was obtained using heteroligand coordination compounds (namely, alkoxoacetylacetonates) as the precursors. The high-dispersive system “ZrTiO4 – carbon”, formed after drying of such gel and carbonization of the obtained xerogel, was used to study the evolution of microstructure for the product (ZrTiO4) during thermal treatment in air for 1 h in the temperature range from 500 °C to 1000°С. It was stated that the formation of crystalline phase occurred in the narrow range 690-730°С. The thermal treatment at 500 °C and 600°С allowed obtaining micro- and mesoporous X-ray amorphous products of the composition ZrTiO4, with the specific surface area falling in the range 82–150m2/g. At the higher temperatures the single-phase nanocrystalline powder was prepared (the specific surface area amounted to 2.5–15m2/g). Particle coarsening took place more extensively at temperatures ≥700°С was shown. For the ZrTiO4 nanopowder crystallized under the mildest conditions at the temperature of 700 °C, chemoresistive gas-sensitive properties were studied for the first time. The material showed a high reproducible response at 1–20% O2 and 200–10,000 ppm H2 at a relatively low detection operating temperature of 450 °C.
000859746 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x0
000859746 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x1
000859746 588__ $$aDataset connected to CrossRef
000859746 65027 $$0V:(DE-MLZ)SciArea-110$$2V:(DE-HGF)$$aChemistry$$x0
000859746 65017 $$0V:(DE-MLZ)GC-1603-2016$$2V:(DE-HGF)$$aChemical Reactions and Advanced Materials$$x0
000859746 693__ $$0EXP:(DE-MLZ)KWS3-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS3-20140101$$6EXP:(DE-MLZ)NL3auS-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-3: Very small angle scattering diffractometer with focusing mirror$$fNL3auS$$x0
000859746 7001_ $$0P:(DE-HGF)0$$aSimonenko, Nikolay P.$$b1
000859746 7001_ $$0P:(DE-HGF)0$$aKopitsa, Gennady P.$$b2
000859746 7001_ $$0P:(DE-HGF)0$$aMokrushin, Artem S.$$b3
000859746 7001_ $$0P:(DE-HGF)0$$aKhamova, Tamara V.$$b4
000859746 7001_ $$0P:(DE-HGF)0$$aSizova, Svetlana V.$$b5
000859746 7001_ $$0P:(DE-HGF)0$$aKhaddazh, Mishal$$b6
000859746 7001_ $$0P:(DE-HGF)0$$aTsvigun, Natalia V.$$b7
000859746 7001_ $$0P:(DE-Juel1)130893$$aPipich, Vitaliy$$b8
000859746 7001_ $$0P:(DE-HGF)0$$aGorshkova, Yulia E.$$b9
000859746 7001_ $$0P:(DE-HGF)0$$aSevastyanov, Vladimir G.$$b10
000859746 7001_ $$0P:(DE-HGF)0$$aKuznetsov, Nikolay T.$$b11
000859746 773__ $$0PERI:(DE-600)1491959-x$$a10.1016/j.matchemphys.2018.12.102$$gVol. 225, p. 347 - 357$$p347 - 357$$tMaterials chemistry and physics$$v225$$x0254-0584$$y2019
000859746 8564_ $$uhttps://juser.fz-juelich.de/record/859746/files/paper-1.pdf$$yRestricted
000859746 8564_ $$uhttps://juser.fz-juelich.de/record/859746/files/paper-1.pdf?subformat=pdfa$$xpdfa$$yRestricted
000859746 909CO $$ooai:juser.fz-juelich.de:859746$$pVDB$$pVDB:MLZ
000859746 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130893$$aForschungszentrum Jülich$$b8$$kFZJ
000859746 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x0
000859746 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x1
000859746 9141_ $$y2019
000859746 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000859746 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMATER CHEM PHYS : 2017
000859746 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000859746 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000859746 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000859746 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000859746 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000859746 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000859746 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000859746 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000859746 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000859746 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000859746 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000859746 920__ $$lyes
000859746 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
000859746 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kNeutronenstreuung ; JCNS-1$$lNeutronenstreuung $$x1
000859746 980__ $$ajournal
000859746 980__ $$aVDB
000859746 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000859746 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000859746 980__ $$aUNRESTRICTED