000859756 001__ 859756
000859756 005__ 20210130000358.0
000859756 0247_ $$2doi$$a10.1002/biot.201800055
000859756 0247_ $$2ISSN$$a1860-6768
000859756 0247_ $$2ISSN$$a1860-7314
000859756 0247_ $$2pmid$$apmid:29704407
000859756 0247_ $$2WOS$$aWOS:000460177400021
000859756 0247_ $$2altmetric$$aaltmetric:39891303
000859756 037__ $$aFZJ-2019-00593
000859756 041__ $$aEnglish
000859756 082__ $$a570
000859756 1001_ $$0P:(DE-HGF)0$$aSchwaminger, Sebastian P.$$b0
000859756 245__ $$aDesign of Interactions Between Nanomaterials and Proteins: A Highly Affine Peptide Tag to Bare Iron Oxide Nanoparticles for Magnetic Protein Separation
000859756 260__ $$aWeinheim$$bWiley-VCH$$c2019
000859756 3367_ $$2DRIVER$$aarticle
000859756 3367_ $$2DataCite$$aOutput Types/Journal article
000859756 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1553777526_24627
000859756 3367_ $$2BibTeX$$aARTICLE
000859756 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000859756 3367_ $$00$$2EndNote$$aJournal Article
000859756 520__ $$aSuperparamagnetic nanoparticles have recently gained much attention due to their broad range of applicability including medical in vivo technologies, sensors and as supports for catalysts. As magnetic affinity materials, they can be utilized for the development of new purification strategies for pharmaceuticals and other target molecules from crude lysates. Here, a short peptide tag based on a glutamate sequence is introduced and the adsorption of pure protein as well as protein from crude cell lysate at different conditions is demonstrated. Fused to a model protein this tag can be used to recognize and purify this protein from a fermentation broth by bare iron oxide nanoparticles (BIONs). Binding of up to 0.2 g protein per g nanoparticles can be achieved and recovered easily by switching to a citrate buffered system. For a deeper understanding of the separation process, the aggregation and agglomeration of the nanoparticle protein systems were monitored for binding and elution steps. Furthermore, an upscaling of the process to the liter scale and the separation of a green fluorescent protein (GFP) containing the affinity tag to purities of 70% from E. coli fermentation broth was possible in a one step process by means of high gradient magnetic separation (HGMS).
000859756 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x0
000859756 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x1
000859756 588__ $$aDataset connected to CrossRef
000859756 65027 $$0V:(DE-MLZ)SciArea-160$$2V:(DE-HGF)$$aBiology$$x0
000859756 65027 $$0V:(DE-MLZ)SciArea-110$$2V:(DE-HGF)$$aChemistry$$x1
000859756 65027 $$0V:(DE-MLZ)SciArea-150$$2V:(DE-HGF)$$aIndustrial Application$$x2
000859756 65017 $$0V:(DE-MLZ)GC-170-2016$$2V:(DE-HGF)$$aEarth, Environment and Cultural Heritage$$x0
000859756 693__ $$0EXP:(DE-MLZ)KWS3-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS3-20140101$$6EXP:(DE-MLZ)NL3auS-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-3: Very small angle scattering diffractometer with focusing mirror$$fNL3auS$$x0
000859756 7001_ $$0P:(DE-HGF)0$$aBlank-Shim, Silvia A.$$b1
000859756 7001_ $$0P:(DE-HGF)0$$aScheifele, Isabell$$b2
000859756 7001_ $$0P:(DE-Juel1)130893$$aPipich, Vitaliy$$b3
000859756 7001_ $$0P:(DE-HGF)0$$aFraga-García, Paula$$b4
000859756 7001_ $$0P:(DE-HGF)0$$aBerensmeier, Sonja$$b5$$eCorresponding author
000859756 773__ $$0PERI:(DE-600)2214038-4$$a10.1002/biot.201800055$$gp. 1800055 -$$n3$$p1800055 -$$tBiotechnology journal$$v14$$x1860-6768$$y2019
000859756 8564_ $$uhttps://juser.fz-juelich.de/record/859756/files/Schwaminger_et_al-2019-Biotechnology_Journal.pdf$$yRestricted
000859756 8564_ $$uhttps://juser.fz-juelich.de/record/859756/files/Schwaminger_et_al-2019-Biotechnology_Journal.pdf?subformat=pdfa$$xpdfa$$yRestricted
000859756 909CO $$ooai:juser.fz-juelich.de:859756$$pVDB$$pVDB:MLZ
000859756 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130893$$aForschungszentrum Jülich$$b3$$kFZJ
000859756 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x0
000859756 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x1
000859756 9141_ $$y2019
000859756 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000859756 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000859756 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000859756 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBIOTECHNOL J : 2017
000859756 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000859756 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000859756 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000859756 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000859756 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000859756 920__ $$lyes
000859756 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
000859756 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kNeutronenstreuung ; JCNS-1$$lNeutronenstreuung $$x1
000859756 980__ $$ajournal
000859756 980__ $$aVDB
000859756 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000859756 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000859756 980__ $$aUNRESTRICTED