001     859756
005     20210130000358.0
024 7 _ |a 10.1002/biot.201800055
|2 doi
024 7 _ |a 1860-6768
|2 ISSN
024 7 _ |a 1860-7314
|2 ISSN
024 7 _ |a pmid:29704407
|2 pmid
024 7 _ |a WOS:000460177400021
|2 WOS
024 7 _ |a altmetric:39891303
|2 altmetric
037 _ _ |a FZJ-2019-00593
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Schwaminger, Sebastian P.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Design of Interactions Between Nanomaterials and Proteins: A Highly Affine Peptide Tag to Bare Iron Oxide Nanoparticles for Magnetic Protein Separation
260 _ _ |a Weinheim
|c 2019
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1553777526_24627
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Superparamagnetic nanoparticles have recently gained much attention due to their broad range of applicability including medical in vivo technologies, sensors and as supports for catalysts. As magnetic affinity materials, they can be utilized for the development of new purification strategies for pharmaceuticals and other target molecules from crude lysates. Here, a short peptide tag based on a glutamate sequence is introduced and the adsorption of pure protein as well as protein from crude cell lysate at different conditions is demonstrated. Fused to a model protein this tag can be used to recognize and purify this protein from a fermentation broth by bare iron oxide nanoparticles (BIONs). Binding of up to 0.2 g protein per g nanoparticles can be achieved and recovered easily by switching to a citrate buffered system. For a deeper understanding of the separation process, the aggregation and agglomeration of the nanoparticle protein systems were monitored for binding and elution steps. Furthermore, an upscaling of the process to the liter scale and the separation of a green fluorescent protein (GFP) containing the affinity tag to purities of 70% from E. coli fermentation broth was possible in a one step process by means of high gradient magnetic separation (HGMS).
536 _ _ |a 6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)
|0 G:(DE-HGF)POF3-6G4
|c POF3-623
|f POF III
|x 0
536 _ _ |0 G:(DE-HGF)POF3-6G15
|f POF III
|x 1
|c POF3-6G15
|a 6G15 - FRM II / MLZ (POF3-6G15)
588 _ _ |a Dataset connected to CrossRef
650 2 7 |a Biology
|0 V:(DE-MLZ)SciArea-160
|2 V:(DE-HGF)
|x 0
650 2 7 |a Chemistry
|0 V:(DE-MLZ)SciArea-110
|2 V:(DE-HGF)
|x 1
650 2 7 |a Industrial Application
|0 V:(DE-MLZ)SciArea-150
|2 V:(DE-HGF)
|x 2
650 1 7 |a Earth, Environment and Cultural Heritage
|0 V:(DE-MLZ)GC-170-2016
|2 V:(DE-HGF)
|x 0
693 _ _ |a Forschungs-Neutronenquelle Heinz Maier-Leibnitz
|e KWS-3: Very small angle scattering diffractometer with focusing mirror
|f NL3auS
|1 EXP:(DE-MLZ)FRMII-20140101
|0 EXP:(DE-MLZ)KWS3-20140101
|5 EXP:(DE-MLZ)KWS3-20140101
|6 EXP:(DE-MLZ)NL3auS-20140101
|x 0
700 1 _ |a Blank-Shim, Silvia A.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Scheifele, Isabell
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Pipich, Vitaliy
|0 P:(DE-Juel1)130893
|b 3
700 1 _ |a Fraga-García, Paula
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Berensmeier, Sonja
|0 P:(DE-HGF)0
|b 5
|e Corresponding author
773 _ _ |a 10.1002/biot.201800055
|g p. 1800055 -
|0 PERI:(DE-600)2214038-4
|n 3
|p 1800055 -
|t Biotechnology journal
|v 14
|y 2019
|x 1860-6768
856 4 _ |u https://juser.fz-juelich.de/record/859756/files/Schwaminger_et_al-2019-Biotechnology_Journal.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/859756/files/Schwaminger_et_al-2019-Biotechnology_Journal.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:859756
|p VDB:MLZ
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130893
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-623
|2 G:(DE-HGF)POF3-600
|v Facility topic: Neutrons for Research on Condensed Matter
|9 G:(DE-HGF)POF3-6G4
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
913 1 _ |a DE-HGF
|9 G:(DE-HGF)POF3-6G15
|x 1
|4 G:(DE-HGF)POF
|v FRM II / MLZ
|1 G:(DE-HGF)POF3-6G0
|0 G:(DE-HGF)POF3-6G15
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-600
|b Forschungsbereich Materie
|l Großgeräte: Materie
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BIOTECHNOL J : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JCNS-FRM-II-20110218
|k JCNS-FRM-II
|l JCNS-FRM-II
|x 0
920 1 _ |0 I:(DE-Juel1)JCNS-1-20110106
|k Neutronenstreuung ; JCNS-1
|l Neutronenstreuung
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JCNS-FRM-II-20110218
980 _ _ |a I:(DE-Juel1)JCNS-1-20110106
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21