000859784 001__ 859784
000859784 005__ 20220930130205.0
000859784 0247_ $$2doi$$a10.2136/vzj2018.06.0123
000859784 0247_ $$2Handle$$a2128/21602
000859784 0247_ $$2WOS$$aWOS:000457481000001
000859784 0247_ $$2altmetric$$aaltmetric:55168953
000859784 037__ $$aFZJ-2019-00615
000859784 082__ $$a550
000859784 1001_ $$0P:(DE-HGF)0$$aBrunetti, Giuseppe$$b0
000859784 245__ $$aOn the Information Content of Cosmic-Ray Neutron Data in the Inverse Estimation of Soil Hydraulic Properties
000859784 260__ $$aAlexandria, Va.$$bGeoScienceWorld$$c2019
000859784 3367_ $$2DRIVER$$aarticle
000859784 3367_ $$2DataCite$$aOutput Types/Journal article
000859784 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1549979519_26322
000859784 3367_ $$2BibTeX$$aARTICLE
000859784 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000859784 3367_ $$00$$2EndNote$$aJournal Article
000859784 520__ $$aObservations of soil moisture content from remote sensing platforms can beused in conjunction with hydrological models to inversely estimate soil hydraulicproperties (SHPs). In recent years, cosmic-ray neutron sensing (CRNS) has provento be a reliable method for the estimation of area-average soil moisture at fieldscales. However, its use in the inverse estimation of the effective SHPs is largelyunexplored. Thus, the main objective of this study was to assess the informationcontent of aboveground fast-neutron counts to estimate SHPs using botha synthetic modeling study and actual experimental data from the Rollesbroichcatchment in Germany. For this, the forward neutron operator COSMIC was externallycoupled with the hydrological model HYDRUS-1D. The coupled model wascombined with the Affine Invariant Ensemble Sampler to calculate the posteriordistributions of effective soil hydraulic parameters as well as the model-predictiveuncertainty for different synthetic and experimental scenarios. Measured watercontents at different depths were used to assess estimated SHPs. The analysis ofboth synthetic and actual CRNS data from homogenous and heterogeneous soilprofiles, respectively, led to confident estimations of the shape parameters a andn, while higher uncertainty was observed for the saturated hydraulic conductivity.Furthermore, results demonstrated that neutron data are less influenced bylocal sources of uncertainty compared with near-surface point measurements.The simultaneous use of CRNS and water content data further reduced the overalluncertainty, opening up new perspectives for the combination of CRNS withother remote sensing techniques for the inverse estimation of the effective SHPs.
000859784 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000859784 7001_ $$0P:(DE-HGF)0$$aSimunek, Jiri$$b1
000859784 7001_ $$0P:(DE-Juel1)129440$$aBogena, Heye$$b2
000859784 7001_ $$0P:(DE-Juel1)144513$$aBaatz, Roland$$b3
000859784 7001_ $$0P:(DE-Juel1)129472$$aHuisman, Johan Alexander$$b4
000859784 7001_ $$0P:(DE-HGF)0$$aDahlke, Helen$$b5
000859784 7001_ $$0P:(DE-Juel1)129549$$aVereecken, Harry$$b6$$eCorresponding author
000859784 773__ $$0PERI:(DE-600)2088189-7$$a10.2136/vzj2018.06.0123$$p1-24$$tVadose zone journal$$v1$$x1539-1663$$y2019
000859784 8564_ $$uhttps://juser.fz-juelich.de/record/859784/files/Inv-706614.pdf
000859784 8564_ $$uhttps://juser.fz-juelich.de/record/859784/files/Inv-706614.pdf?subformat=pdfa$$xpdfa
000859784 8564_ $$uhttps://juser.fz-juelich.de/record/859784/files/vzj-18-1-180123.pdf$$yOpenAccess
000859784 8564_ $$uhttps://juser.fz-juelich.de/record/859784/files/vzj-18-1-180123.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000859784 8767_ $$8706614$$92019-01-29$$d2019-02-06$$eAPC$$jZahlung erfolgt$$pman#vzj-2018-06-0123
000859784 8767_ $$8706614$$92019-01-29$$d2019-02-06$$ePage charges$$jZahlung erfolgt$$pman#vzj-2018-06-0123
000859784 909CO $$ooai:juser.fz-juelich.de:859784$$popenCost$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000859784 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129440$$aForschungszentrum Jülich$$b2$$kFZJ
000859784 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144513$$aForschungszentrum Jülich$$b3$$kFZJ
000859784 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129472$$aForschungszentrum Jülich$$b4$$kFZJ
000859784 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich$$b6$$kFZJ
000859784 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000859784 9141_ $$y2019
000859784 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000859784 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000859784 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bVADOSE ZONE J : 2017
000859784 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000859784 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000859784 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000859784 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000859784 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000859784 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000859784 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000859784 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000859784 980__ $$ajournal
000859784 980__ $$aVDB
000859784 980__ $$aUNRESTRICTED
000859784 980__ $$aI:(DE-Juel1)IBG-3-20101118
000859784 980__ $$aAPC
000859784 9801_ $$aAPC
000859784 9801_ $$aFullTexts