001     859784
005     20220930130205.0
024 7 _ |a 10.2136/vzj2018.06.0123
|2 doi
024 7 _ |a 2128/21602
|2 Handle
024 7 _ |a WOS:000457481000001
|2 WOS
024 7 _ |a altmetric:55168953
|2 altmetric
037 _ _ |a FZJ-2019-00615
082 _ _ |a 550
100 1 _ |a Brunetti, Giuseppe
|0 P:(DE-HGF)0
|b 0
245 _ _ |a On the Information Content of Cosmic-Ray Neutron Data in the Inverse Estimation of Soil Hydraulic Properties
260 _ _ |a Alexandria, Va.
|c 2019
|b GeoScienceWorld
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1549979519_26322
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Observations of soil moisture content from remote sensing platforms can beused in conjunction with hydrological models to inversely estimate soil hydraulicproperties (SHPs). In recent years, cosmic-ray neutron sensing (CRNS) has provento be a reliable method for the estimation of area-average soil moisture at fieldscales. However, its use in the inverse estimation of the effective SHPs is largelyunexplored. Thus, the main objective of this study was to assess the informationcontent of aboveground fast-neutron counts to estimate SHPs using botha synthetic modeling study and actual experimental data from the Rollesbroichcatchment in Germany. For this, the forward neutron operator COSMIC was externallycoupled with the hydrological model HYDRUS-1D. The coupled model wascombined with the Affine Invariant Ensemble Sampler to calculate the posteriordistributions of effective soil hydraulic parameters as well as the model-predictiveuncertainty for different synthetic and experimental scenarios. Measured watercontents at different depths were used to assess estimated SHPs. The analysis ofboth synthetic and actual CRNS data from homogenous and heterogeneous soilprofiles, respectively, led to confident estimations of the shape parameters a andn, while higher uncertainty was observed for the saturated hydraulic conductivity.Furthermore, results demonstrated that neutron data are less influenced bylocal sources of uncertainty compared with near-surface point measurements.The simultaneous use of CRNS and water content data further reduced the overalluncertainty, opening up new perspectives for the combination of CRNS withother remote sensing techniques for the inverse estimation of the effective SHPs.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
700 1 _ |a Simunek, Jiri
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Bogena, Heye
|0 P:(DE-Juel1)129440
|b 2
700 1 _ |a Baatz, Roland
|0 P:(DE-Juel1)144513
|b 3
700 1 _ |a Huisman, Johan Alexander
|0 P:(DE-Juel1)129472
|b 4
700 1 _ |a Dahlke, Helen
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Vereecken, Harry
|0 P:(DE-Juel1)129549
|b 6
|e Corresponding author
773 _ _ |a 10.2136/vzj2018.06.0123
|0 PERI:(DE-600)2088189-7
|p 1-24
|t Vadose zone journal
|v 1
|y 2019
|x 1539-1663
856 4 _ |u https://juser.fz-juelich.de/record/859784/files/Inv-706614.pdf
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/859784/files/Inv-706614.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/859784/files/vzj-18-1-180123.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/859784/files/vzj-18-1-180123.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:859784
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB:Earth_Environment
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129440
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)144513
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129472
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129549
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b VADOSE ZONE J : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21