000859798 001__ 859798
000859798 005__ 20240712100852.0
000859798 0247_ $$2doi$$a10.5194/acp-18-17371-2018
000859798 0247_ $$2ISSN$$a1680-7316
000859798 0247_ $$2ISSN$$a1680-7324
000859798 0247_ $$2Handle$$a2128/21360
000859798 0247_ $$2WOS$$aWOS:000452384100002
000859798 0247_ $$2altmetric$$aaltmetric:52315305
000859798 037__ $$aFZJ-2019-00629
000859798 082__ $$a550
000859798 1001_ $$0P:(DE-HGF)0$$aWolf, Veronika$$b0$$eCorresponding author
000859798 245__ $$aArctic ice clouds over northern Sweden: microphysical properties studied with the Balloon-borne Ice Cloud particle Imager B-ICI244
000859798 260__ $$aKatlenburg-Lindau$$bEGU$$c2018
000859798 3367_ $$2DRIVER$$aarticle
000859798 3367_ $$2DataCite$$aOutput Types/Journal article
000859798 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1548235593_13984
000859798 3367_ $$2BibTeX$$aARTICLE
000859798 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000859798 3367_ $$00$$2EndNote$$aJournal Article
000859798 520__ $$aIce particle and cloud properties such as particle size, particle shape and number concentration influence the net radiation effect of cirrus clouds. Measurements of these features are of great interest for the improvement of weather and climate models, especially for the Arctic region. In this study, balloon-borne in situ measurements of Arctic cirrus clouds have been analysed for the first time with respect to their origin. Eight cirrus cloud measurements have been carried out in Kiruna (68∘ N), Sweden, using the Balloon-borne Ice Cloud particle Imager (B-ICI). Ice particle diameters between 10 and 1200 µm have been found and the shape could be recognized from 20 µm upwards. Great variability in particle size and shape is observed. This cannot simply be explained by local environmental conditions. However, if sorted by cirrus origin, wind and weather conditions, the observed differences can be assessed. Number concentrations between 3 and 400 L−1 have been measured, but the number concentration has reached values above 100 L−1 only for two cases. These two cirrus clouds are of in situ origin and have been associated with waves. For all other measurements, the maximum ice particle concentration is below 50 L−1 and for one in situ origin cirrus case only 3 L−1. In the case of in situ origin clouds, the particles are all smaller than 350 µm diameter. The PSDs for liquid origin clouds are much broader with particle sizes between 10 and 1200 µm. Furthermore, it is striking that in the case of in situ origin clouds almost all particles are compact (61 %) or irregular (25 %) when examining the particle shape. In liquid origin clouds, on the other hand, most particles are irregular (48 %), rosettes (25 %) or columnar (14 %). There are hardly any plates in cirrus regardless of their origin. It is also noticeable that in the case of liquid origin clouds the rosettes and columnar particles are almost all hollow.
000859798 536__ $$0G:(DE-HGF)POF3-244$$a244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)$$cPOF3-244$$fPOF III$$x0
000859798 588__ $$aDataset connected to CrossRef
000859798 7001_ $$00000-0003-3701-7925$$aKuhn, Thomas$$b1
000859798 7001_ $$0P:(DE-HGF)0$$aMilz, Mathias$$b2
000859798 7001_ $$0P:(DE-HGF)0$$aVoelger, Peter$$b3
000859798 7001_ $$0P:(DE-Juel1)129131$$aKrämer, Martina$$b4
000859798 7001_ $$0P:(DE-Juel1)139013$$aRolf, Christian$$b5
000859798 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-18-17371-2018$$gVol. 18, no. 23, p. 17371 - 17386$$n23$$p17371 - 17386$$tAtmospheric chemistry and physics$$v18$$x1680-7324$$y2018
000859798 8564_ $$uhttps://juser.fz-juelich.de/record/859798/files/acp-18-17371-2018.pdf$$yOpenAccess
000859798 8564_ $$uhttps://juser.fz-juelich.de/record/859798/files/acp-18-17371-2018.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000859798 909CO $$ooai:juser.fz-juelich.de:859798$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000859798 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129131$$aForschungszentrum Jülich$$b4$$kFZJ
000859798 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)139013$$aForschungszentrum Jülich$$b5$$kFZJ
000859798 9131_ $$0G:(DE-HGF)POF3-244$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vComposition and dynamics of the upper troposphere and middle atmosphere$$x0
000859798 9141_ $$y2018
000859798 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000859798 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000859798 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000859798 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2017
000859798 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000859798 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000859798 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000859798 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000859798 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000859798 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000859798 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review
000859798 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2017
000859798 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000859798 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000859798 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000859798 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000859798 9801_ $$aFullTexts
000859798 980__ $$ajournal
000859798 980__ $$aVDB
000859798 980__ $$aUNRESTRICTED
000859798 980__ $$aI:(DE-Juel1)IEK-7-20101013
000859798 981__ $$aI:(DE-Juel1)ICE-4-20101013