000859816 001__ 859816
000859816 005__ 20240709082220.0
000859816 0247_ $$2doi$$a10.1016/j.nanoen.2018.12.084
000859816 0247_ $$2ISSN$$a2211-2855
000859816 0247_ $$2ISSN$$a2211-3282
000859816 0247_ $$2WOS$$aWOS:000458419000073
000859816 037__ $$aFZJ-2019-00647
000859816 041__ $$aEnglish
000859816 082__ $$a660
000859816 1001_ $$00000-0002-3622-129X$$aTian, Huajun$$b0
000859816 245__ $$aUltra-stable sodium metal-iodine batteries enabled by an in-situ solid electrolyte interphase
000859816 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2019
000859816 3367_ $$2DRIVER$$aarticle
000859816 3367_ $$2DataCite$$aOutput Types/Journal article
000859816 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1548227217_15660
000859816 3367_ $$2BibTeX$$aARTICLE
000859816 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000859816 3367_ $$00$$2EndNote$$aJournal Article
000859816 520__ $$aHigh capacity sodium (Na) metal anodes open up new opportunities for developing next-generation rechargeable batteries with both high power and high energy densities. However, many challenges still plagued their practical application, including low plating/stripping Coulombic efficiency (CE) and dendrite growth after repeated cycle inducing safety issue. Especially, the sodium metal is less stable in organic (i.e. carbonate-based) electrolytes than lithium metal, due to the more unstable organic solid–electrolyte interface (SEI). Herein, we report a facile technology to stabilize sodium metal anode and inhibit the growth of sodium dendrites. The in-situ ultrathin NaI SEI layer successfully endows best-performance Na/I2 metal batteries (>2200 cycles) with high capacity (210 mA h g−1 at 0.5 C) based on the conversion reaction chemistry with higher discharge voltage plateau (> 2.7 V) and lower overpotential (134 mV) due to the fast charge transfer dynamics and interfacial stability compared with pristine Na anode. The detailed theoretical calculations and experimental results elucidate that NaI layer has a much lower diffusion barrier compared to that of NaF (NaF as one the most commonly found inorganic components in Na-based SEI layer), and actually facilitates more uniform sodium deposition. This work provides a new avenue for designing low-cost, high-performance and high-safety sodium metal-iodine batteries and other metal-iodine batteries.
000859816 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000859816 588__ $$aDataset connected to CrossRef
000859816 7001_ $$0P:(DE-HGF)0$$aShao, Hezhu$$b1
000859816 7001_ $$0P:(DE-HGF)0$$aChen, Yi$$b2
000859816 7001_ $$0P:(DE-HGF)0$$aFang, Xiaqin$$b3
000859816 7001_ $$0P:(DE-HGF)0$$aXiong, Pan$$b4
000859816 7001_ $$00000-0002-4365-486X$$aSun, Bing$$b5
000859816 7001_ $$0P:(DE-Juel1)165918$$aNotten, Peter H. L.$$b6$$ufzj
000859816 7001_ $$0P:(DE-HGF)0$$aWang, Guoxiu$$b7$$eCorresponding author
000859816 773__ $$0PERI:(DE-600)2648700-7$$a10.1016/j.nanoen.2018.12.084$$gVol. 57, p. 692 - 702$$p692 - 702$$tNano energy$$v57$$x2211-2855$$y2019
000859816 909CO $$ooai:juser.fz-juelich.de:859816$$pVDB
000859816 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aChinese Academy of Sciences, Ningbo $$b1
000859816 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aChinese Academy of Sciences, Ningbo $$b2
000859816 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aUniversity of Technology Sydney $$b3
000859816 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aUniversity of Technology Sydney $$b4
000859816 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165918$$aForschungszentrum Jülich$$b6$$kFZJ
000859816 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)165918$$a TU Eindhoven$$b6
000859816 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000859816 9141_ $$y2019
000859816 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANO ENERGY : 2017
000859816 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000859816 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000859816 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000859816 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000859816 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000859816 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000859816 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bNANO ENERGY : 2017
000859816 920__ $$lyes
000859816 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
000859816 980__ $$ajournal
000859816 980__ $$aVDB
000859816 980__ $$aI:(DE-Juel1)IEK-9-20110218
000859816 980__ $$aUNRESTRICTED
000859816 981__ $$aI:(DE-Juel1)IET-1-20110218