000859820 001__ 859820
000859820 005__ 20240712112837.0
000859820 0247_ $$2doi$$a10.1039/C8CP04607G
000859820 0247_ $$2ISSN$$a1463-9076
000859820 0247_ $$2ISSN$$a1463-9084
000859820 0247_ $$2pmid$$apmid:30320331
000859820 0247_ $$2WOS$$aWOS:000448665900063
000859820 037__ $$aFZJ-2019-00651
000859820 041__ $$aEnglish
000859820 082__ $$a540
000859820 1001_ $$00000-0003-3389-7216$$aÜberrück, Till$$b0$$eCorresponding author
000859820 245__ $$aEffect of nitroxide spin probes on the transport properties of Nafion membranes
000859820 260__ $$aCambridge$$bRSC Publ.66479$$c2018
000859820 3367_ $$2DRIVER$$aarticle
000859820 3367_ $$2DataCite$$aOutput Types/Journal article
000859820 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1548227946_15660
000859820 3367_ $$2BibTeX$$aARTICLE
000859820 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000859820 3367_ $$00$$2EndNote$$aJournal Article
000859820 520__ $$aNafion is the most common material used as a proton exchange membrane in fuel cells. Yet, details of the transport pathways for protons and water in the inner membrane are still under debate. Overhauser Dynamic Nuclear Polarization (ODNP) has proven to be a useful tool for probing hydration dynamics and interactions within 5–8 Å of protein and soft material surfaces. Recently it was suggested that ODNP can also be applied to analyze surface water dynamics along Nafion's inner membrane. Here we interrogate the viability of this method for Nafion by carrying out a series of measurements relying on 1H nuclear magnetic resonance (NMR) relaxometry and diffusometry experiments with and without ODNP hyperpolarization, accompanied by other complementary characterization methods including small angle X-ray scattering (SAXS), thermal gravimetric analysis (TGA) of hydration, and proton conductivity by AC impedance spectroscopy. Our comprehensive study shows that commonly used paramagnetic spin probes—here, stable nitroxide radicals—for ODNP, as well as their diamagnetic analogues, reduce the inner membrane surface hydrophilicity, depending on the location and concentration of the spin probe. This heavily reduces the hydration of Nafion, hence increases the tortuosity of the inner membrane morphology and/or increases the activiation barrier for water transport, and consequently impedes water diffusion, transport, and proton conductivity.
000859820 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000859820 588__ $$aDataset connected to CrossRef
000859820 7001_ $$0P:(DE-HGF)0$$aNeudert, Oliver$$b1
000859820 7001_ $$00000-0002-3216-4785$$aKreuer, Klaus-Dieter$$b2
000859820 7001_ $$00000-0002-1152-4438$$aBlümich, Bernhard$$b3
000859820 7001_ $$0P:(DE-Juel1)162401$$aGranwehr, Josef$$b4$$ufzj
000859820 7001_ $$0P:(DE-HGF)0$$aStapf, Siegfried$$b5
000859820 7001_ $$00000-0001-6489-6246$$aHan, Songi$$b6
000859820 773__ $$0PERI:(DE-600)1476244-4$$a10.1039/C8CP04607G$$gVol. 20, no. 41, p. 26660 - 26674$$n41$$p26660 - 26674$$tPhysical chemistry, chemical physics$$v20$$x1463-9084$$y2018
000859820 8564_ $$uhttps://juser.fz-juelich.de/record/859820/files/c8cp04607g-1.pdf$$yRestricted
000859820 8564_ $$uhttps://juser.fz-juelich.de/record/859820/files/c8cp04607g-1.pdf?subformat=pdfa$$xpdfa$$yRestricted
000859820 909CO $$ooai:juser.fz-juelich.de:859820$$pVDB
000859820 9101_ $$0I:(DE-588b)36225-6$$60000-0003-3389-7216$$aRWTH Aachen$$b0$$kRWTH
000859820 9101_ $$0I:(DE-588b)36225-6$$60000-0002-1152-4438$$aRWTH Aachen$$b3$$kRWTH
000859820 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162401$$aForschungszentrum Jülich$$b4$$kFZJ
000859820 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)162401$$aRWTH Aachen$$b4$$kRWTH
000859820 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000859820 9141_ $$y2018
000859820 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000859820 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000859820 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000859820 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS CHEM CHEM PHYS : 2017
000859820 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000859820 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000859820 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000859820 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000859820 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000859820 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000859820 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000859820 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000859820 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000859820 920__ $$lyes
000859820 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
000859820 980__ $$ajournal
000859820 980__ $$aVDB
000859820 980__ $$aI:(DE-Juel1)IEK-9-20110218
000859820 980__ $$aUNRESTRICTED
000859820 981__ $$aI:(DE-Juel1)IET-1-20110218