001     859840
005     20210130000406.0
024 7 _ |a 10.1038/s41598-018-36837-8
|2 doi
024 7 _ |a 2128/21408
|2 Handle
024 7 _ |a pmid:30670785
|2 pmid
024 7 _ |a WOS:000456282100014
|2 WOS
037 _ _ |a FZJ-2019-00662
082 _ _ |a 600
100 1 _ |a Rainko, Denis
|0 P:(DE-Juel1)166341
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Impact of tensile strain on low Sn content GeSn lasing
260 _ _ |a [London]
|c 2019
|b Macmillan Publishers Limited, part of Springer Nature
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1548685377_8554
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In recent years much effort has been made to increase the Sn content in GeSn alloys in order to increasedirect bandgap charge carrier recombination and, therefore, to reach room temperature lasing.While being successful for the former, the increase of Sn content is detrimental, leading to increaseddefect concentrations and a lower thermal budget regarding processing. In this work we demonstratestrong photoluminescence enhancement in low Sn content Ge0.94Sn0.06 layers by implementing tensilestrain. Fitting of the calculated photoluminescence spectra to reproduce our experimental resultsindicates a strain of ~1.45%, induced via an SiNx stressor layer, which is strong enough to transform theinvestigated layer into a direct bandgap semiconductor. Moreover, theoretical calculations, using the8-band k·p model, show the advantages of using low Sn content tensile strained GeSn layers in respectto gain and lasing temperature. We show that low Sn content GeSn alloys have a strong potential toenable efficient room temperature lasers on electronic-photonic integrated circuits.
536 _ _ |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|0 G:(DE-HGF)POF3-521
|c POF3-521
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Ikonic, Zoran
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Elbaz, Anas
|0 P:(DE-HGF)0
|b 2
700 1 _ |a von den Driesch, Nils
|0 P:(DE-Juel1)161247
|b 3
|u fzj
700 1 _ |a Stange, Daniela
|0 P:(DE-Juel1)161180
|b 4
|u fzj
700 1 _ |a Herth, Etienne
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Boucaud, Philippe
|0 P:(DE-HGF)0
|b 6
700 1 _ |a El Kurdi, Moustafa
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Grützmacher, Detlev
|0 P:(DE-Juel1)125588
|b 8
|u fzj
700 1 _ |a Buca, Dan Mihai
|0 P:(DE-Juel1)125569
|b 9
|u fzj
773 _ _ |a 10.1038/s41598-018-36837-8
|g Vol. 9, no. 1, p. 259
|0 PERI:(DE-600)2615211-3
|n 1
|p 259
|t Scientific reports
|v 9
|y 2019
|x 2045-2322
856 4 _ |u https://juser.fz-juelich.de/record/859840/files/30035393640008550743INVOIC2676127001001.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/859840/files/2019_Rainko_Impact%20of%20tensile%20strain%20on%20low%20Sn%20content%20GeSn%20lasing.pdf
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/859840/files/30035393640008550743INVOIC2676127001001.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/859840/files/2019_Rainko_Impact%20of%20tensile%20strain%20on%20low%20Sn%20content%20GeSn%20lasing.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:859840
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)166341
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)161247
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)161180
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)125588
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)125569
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-521
|2 G:(DE-HGF)POF3-500
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SCI REP-UK : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
920 1 _ |0 I:(DE-Juel1)PGI-10-20170113
|k PGI-10
|l JARA Institut Green IT
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-Juel1)PGI-10-20170113
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21