000859842 001__ 859842
000859842 005__ 20210130000406.0
000859842 0247_ $$2doi$$a10.1088/1361-6641/aaebb5
000859842 0247_ $$2ISSN$$a0268-1242
000859842 0247_ $$2ISSN$$a1361-6641
000859842 0247_ $$2WOS$$aWOS:000450304300001
000859842 037__ $$aFZJ-2019-00664
000859842 082__ $$a620
000859842 1001_ $$0P:(DE-HGF)0$$aFukuda, Masahiro$$b0$$eCorresponding author
000859842 245__ $$aOptoelectronic properties of high-Si-content-Ge 1 −x – y Si x Sn y /Ge 1− x Sn x /Ge 1− x–y Si x Sn y double heterostructure
000859842 260__ $$aBristol$$bIOP Publ.$$c2018
000859842 3367_ $$2DRIVER$$aarticle
000859842 3367_ $$2DataCite$$aOutput Types/Journal article
000859842 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1548685529_7129
000859842 3367_ $$2BibTeX$$aARTICLE
000859842 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000859842 3367_ $$00$$2EndNote$$aJournal Article
000859842 520__ $$aThe optoelectronic properties of Ge1−x−ySixSny/Ge1−xSnx/Ge1−x−ySixSny doubleheterostructures pseudomorphically grown on a Ge substrate were investigated. Thephotoluminescence (PL) intensity of the sample with Ge0.66Si0.23Sn0.11 cladding layers is threetimes larger compared to PL from structure with a Ge cladding layer, which can be attributed tohigher energy band offsets at both conduction and valence band edges at theGe0.91Sn0.09/Ge0.66Si0.23Sn0.11 interface. The PL spectrum of the sample with theGe0.66Si0.23Sn0.11 cladding layer at room temperature can be deconvoluted into four components,and the origins of these components can be assigned to direct and indirect transitions bymeasuring the temperature dependence of each component’s intensity. In addition, we examinedthe formation and characterization of strain-relaxed Ge1−x−ySixSny/Ge1−xSnx/Ge1−x−ySixSnydouble heterostructures to relieve the compressive strain in the Ge1−xSnx layer. Stacking faultswere observed in the Ge1−xSnx and Ge1−x−ySixSny layers. The PL peak intensity of the strainrelaxedGe1−xSnx layer decreases by a factor of 1/20 compared to the PL peak intensity of thedouble heterostructure pseudomorphically grown on a Ge(001) substrate. In addition, PLintensity can be increased by post-deposition annealing owing to decreasing defects.
000859842 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000859842 588__ $$aDataset connected to CrossRef
000859842 7001_ $$0P:(DE-Juel1)166341$$aRainko, Denis$$b1
000859842 7001_ $$0P:(DE-HGF)0$$aSakashita, Mitsuo$$b2
000859842 7001_ $$0P:(DE-HGF)0$$aKurosawa, Masashi$$b3
000859842 7001_ $$0P:(DE-Juel1)125569$$aBuca, Dan Mihai$$b4
000859842 7001_ $$0P:(DE-HGF)0$$aNakatsuka, Osamu$$b5
000859842 7001_ $$0P:(DE-HGF)0$$aZaima, Shigeaki$$b6
000859842 773__ $$0PERI:(DE-600)1361285-2$$a10.1088/1361-6641/aaebb5$$gVol. 33, no. 12, p. 124018 -$$n12$$p124018 -$$tSemiconductor science and technology$$v33$$x1361-6641$$y2018
000859842 8564_ $$uhttps://juser.fz-juelich.de/record/859842/files/Fukuda_2018_Semicond._Sci._Technol._33_124018.pdf$$yRestricted
000859842 8564_ $$uhttps://juser.fz-juelich.de/record/859842/files/Fukuda_2018_Semicond._Sci._Technol._33_124018.pdf?subformat=pdfa$$xpdfa$$yRestricted
000859842 909CO $$ooai:juser.fz-juelich.de:859842$$pVDB
000859842 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166341$$aForschungszentrum Jülich$$b1$$kFZJ
000859842 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125569$$aForschungszentrum Jülich$$b4$$kFZJ
000859842 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000859842 9141_ $$y2018
000859842 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000859842 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000859842 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSEMICOND SCI TECH : 2017
000859842 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000859842 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000859842 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000859842 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000859842 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000859842 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000859842 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000859842 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000859842 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000859842 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000859842 920__ $$lno
000859842 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000859842 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000859842 9201_ $$0I:(DE-Juel1)PGI-10-20170113$$kPGI-10$$lJARA Institut Green IT$$x2
000859842 980__ $$ajournal
000859842 980__ $$aVDB
000859842 980__ $$aI:(DE-Juel1)PGI-9-20110106
000859842 980__ $$aI:(DE-82)080009_20140620
000859842 980__ $$aI:(DE-Juel1)PGI-10-20170113
000859842 980__ $$aUNRESTRICTED