000859850 001__ 859850
000859850 005__ 20220930130205.0
000859850 0247_ $$2doi$$a10.1038/s41598-019-39262-7
000859850 0247_ $$2Handle$$a2128/21764
000859850 0247_ $$2pmid$$apmid:30808895
000859850 0247_ $$2WOS$$aWOS:000459698900068
000859850 0247_ $$2altmetric$$aaltmetric:56740890
000859850 037__ $$aFZJ-2019-00672
000859850 082__ $$a600
000859850 1001_ $$0P:(DE-HGF)0$$aPatel, Harshal Jayeshkumar$$b0
000859850 245__ $$aProton Magnetic Resonance Spectroscopy of the motor cortex reveals long term GABA change following anodal Transcranial Direct Current Stimulation
000859850 260__ $$a[London]$$bMacmillan Publishers Limited, part of Springer Nature$$c2019
000859850 3367_ $$2DRIVER$$aarticle
000859850 3367_ $$2DataCite$$aOutput Types/Journal article
000859850 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1551787138_21011
000859850 3367_ $$2BibTeX$$aARTICLE
000859850 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000859850 3367_ $$00$$2EndNote$$aJournal Article
000859850 520__ $$aAnodal transcranial direct current stimulation (tDCS) over the primary motor cortex (M1) has been reported to increase the firing rates of neurons and to modulate the gamma-aminobutyric acid (GABA) concentration. To date, knowledge about the nature and duration of these tDCS induced effects is incomplete. We aimed to investigate long-term effects of anodal tDCS over M1 on GABA dynamics in humans. Repeated magnetic resonance spectroscopy (MRS) was employed to measure relative GABA concentration in M1 for approximately 64 minutes after stimulation. The study was performed on 32 healthy subjects. Either anodal or sham tDCS were applied for 10 minutes with the active electrode over the left M1 and the reference electrode over the right supra-orbital region. Pre and post-tDCS MRS scans were performed to acquire GABA-edited spectra using 3 T Prisma Siemens scanner. GABA signals showed no change over time in the sham tDCS group, whereas anodal tDCS resulted in a significant early decrease within 25 minutes after tDCS and then significant late decrease after 66 minutes which continued until the last test measurements. The late changes in GABA concentration might be related to long-term plasticity mechanism. These results contribute to a better understanding of the neurochemical mechanism underlying long-term cortical plasticity following anodal tDCS.
000859850 536__ $$0G:(DE-HGF)POF3-573$$a573 - Neuroimaging (POF3-573)$$cPOF3-573$$fPOF III$$x0
000859850 588__ $$aDataset connected to CrossRef
000859850 7001_ $$0P:(DE-HGF)0$$aRomanzetti, Sandro$$b1
000859850 7001_ $$0P:(DE-HGF)0$$aPellicano, Antonello$$b2
000859850 7001_ $$0P:(DE-HGF)0$$aNitsche, Michael A.$$b3
000859850 7001_ $$0P:(DE-HGF)0$$aReetz, Kathrin$$b4
000859850 7001_ $$0P:(DE-Juel1)142495$$aBinkofski, Ferdinand$$b5$$eCorresponding author$$ufzj
000859850 773__ $$0PERI:(DE-600)2615211-3$$a10.1038/s41598-019-39262-7$$gVol. 9, no. 1, p. 2807$$n1$$p2807$$tScientific reports$$v9$$x2045-2322$$y2019
000859850 8564_ $$uhttps://juser.fz-juelich.de/record/859850/files/30036688680008746563INVOIC2676132820001.pdf
000859850 8564_ $$uhttps://juser.fz-juelich.de/record/859850/files/30036688680008746563INVOIC2676132820001.pdf?subformat=pdfa$$xpdfa
000859850 8564_ $$uhttps://juser.fz-juelich.de/record/859850/files/s41598-019-39262-7.pdf$$yOpenAccess
000859850 8564_ $$uhttps://juser.fz-juelich.de/record/859850/files/s41598-019-39262-7.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000859850 8767_ $$82676132820$$92019-01-18$$d2019-01-23$$eAPC$$jZahlung erfolgt$$pSREP-18-37522B
000859850 909CO $$ooai:juser.fz-juelich.de:859850$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000859850 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142495$$aForschungszentrum Jülich$$b5$$kFZJ
000859850 9131_ $$0G:(DE-HGF)POF3-573$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vNeuroimaging$$x0
000859850 9141_ $$y2019
000859850 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000859850 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000859850 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000859850 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000859850 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000859850 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI REP-UK : 2017
000859850 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000859850 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000859850 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000859850 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000859850 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000859850 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000859850 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000859850 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000859850 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000859850 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000859850 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000859850 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000859850 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000859850 920__ $$lyes
000859850 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x0
000859850 9201_ $$0I:(DE-82)080010_20140620$$kJARA-BRAIN$$lJARA-BRAIN$$x1
000859850 980__ $$ajournal
000859850 980__ $$aVDB
000859850 980__ $$aUNRESTRICTED
000859850 980__ $$aI:(DE-Juel1)INM-4-20090406
000859850 980__ $$aI:(DE-82)080010_20140620
000859850 980__ $$aAPC
000859850 9801_ $$aAPC
000859850 9801_ $$aFullTexts