Hauptseite > Publikationsdatenbank > Insights on Layered Hybrid Solid Electrolyte and Its Application in Long Lifespan High-Voltage All–Solid–State Lithium Battery > print |
001 | 859869 | ||
005 | 20240712112838.0 | ||
024 | 7 | _ | |a 10.1039/C8TA11259B |2 doi |
024 | 7 | _ | |a 2050-7488 |2 ISSN |
024 | 7 | _ | |a 2050-7496 |2 ISSN |
024 | 7 | _ | |a 2128/22585 |2 Handle |
024 | 7 | _ | |a altmetric:56059403 |2 altmetric |
024 | 7 | _ | |a WOS:000459331600041 |2 WOS |
037 | _ | _ | |a FZJ-2019-00691 |
041 | _ | _ | |a English |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Yu, Shicheng |0 P:(DE-Juel1)161141 |b 0 |e Corresponding author |u fzj |
245 | _ | _ | |a Insights on Layered Hybrid Solid Electrolyte and Its Application in Long Lifespan High-Voltage All–Solid–State Lithium Battery |
260 | _ | _ | |a London |c 2019 |b RSC |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1565615659_6659 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Direct integration of a metallic lithium anode with the ceramic Li1.3Al0.3Ti1.7(PO4)3 (LATP) electrolyte into an all-solid-state battery is highly challenging due to their chemical and electrochemical incompatibility. Herein, a layered hybrid solid electrolyte is designed by coating the ceramic LATP electrolyte with a protective polymer electrolyte, polyphosphazene/PVDF-HFP/LiBOB. This polymer electrolyte comprises highly Li+ conductive polyphosphazene and mechanically stable PVDF-HFP as the polymer matrix, and the mobile lithium ions in the polymer layer are supplied by LiBOB. Equipped with both polymer and ceramic components, the hybrid electrolyte possesses favorable features, such as a flexible surface, high ionic conductivity, high chemical stability against lithium and wide electrochemical stability window (4.7 V), which all to help realize its application in all-solid-state lithium batteries. The prepared all-solid-state battery with a metallic lithium anode and high-voltage Li3V2(PO4)3/CNT cathode shows high capacity and excellent cycling performance with negligible capacity loss over 500 cycles at 50 °C. Furthermore, the analysis of the hybrid solid electrolyte after long-term cycling demonstrates outstanding electrode/electrolyte interfacial stability. This study suggests that use of solid organic–inorganic hybrid electrolyte is a promising approach to circumvent the mechanical, chemical and electrochemical limitations at the interface of electrodes and ceramic electrolyte for all-solid-state batteries. |
536 | _ | _ | |a 131 - Electrochemical Storage (POF3-131) |0 G:(DE-HGF)POF3-131 |c POF3-131 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Schmohl, Sebastian |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Liu, Zigeng |0 P:(DE-Juel1)172733 |b 2 |u fzj |
700 | 1 | _ | |a Hoffmeyer, Marija |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Schön, Nino |0 P:(DE-Juel1)169444 |b 4 |u fzj |
700 | 1 | _ | |a Hausen, Florian |0 P:(DE-Juel1)167581 |b 5 |u fzj |
700 | 1 | _ | |a Tempel, Hermann |0 P:(DE-Juel1)161208 |b 6 |u fzj |
700 | 1 | _ | |a Kungl, Hans |0 P:(DE-Juel1)157700 |b 7 |u fzj |
700 | 1 | _ | |a Wiemhofer, Hans-Dieter |0 P:(DE-Juel1)176785 |b 8 |u fzj |
700 | 1 | _ | |a Eichel, Rüdiger |0 P:(DE-Juel1)156123 |b 9 |u fzj |
773 | _ | _ | |a 10.1039/C8TA11259B |g p. 10.1039.C8TA11259B |0 PERI:(DE-600)2702232-8 |n 8 |p 3882-3894 |t Journal of materials chemistry / A Materials for energy and sustainability A |v 7 |y 2019 |x 2050-7496 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/859869/files/c8ta11259b.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://juser.fz-juelich.de/record/859869/files/c8ta11259b.pdf?subformat=pdfa |
909 | C | O | |o oai:juser.fz-juelich.de:859869 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)161141 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)172733 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)169444 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 4 |6 P:(DE-Juel1)169444 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)167581 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 5 |6 P:(DE-Juel1)167581 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)161208 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)157700 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)176785 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)156123 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 9 |6 P:(DE-Juel1)156123 |
913 | 1 | _ | |a DE-HGF |l Speicher und vernetzte Infrastrukturen |1 G:(DE-HGF)POF3-130 |0 G:(DE-HGF)POF3-131 |2 G:(DE-HGF)POF3-100 |v Electrochemical Storage |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
914 | 1 | _ | |y 2019 |
915 | _ | _ | |a Creative Commons Attribution CC BY 3.0 |0 LIC:(DE-HGF)CCBY3 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J MATER CHEM A : 2017 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b J MATER CHEM A : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Allianz-Lizenz / DFG |0 StatID:(DE-HGF)0400 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a National-Konsortium |0 StatID:(DE-HGF)0430 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-9-20110218 |k IEK-9 |l Grundlagen der Elektrochemie |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IEK-9-20110218 |
981 | _ | _ | |a I:(DE-Juel1)IET-1-20110218 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|