000859933 001__ 859933
000859933 005__ 20210315110836.0
000859933 020__ $$a978-3-030-02464-2 (print)
000859933 020__ $$a978-3-030-02465-9 (electronic)
000859933 0247_ $$2doi$$a10.1007/978-3-030-02465-9_18
000859933 0247_ $$2ISSN$$a0302-9743
000859933 0247_ $$2ISSN$$a1611-3349
000859933 0247_ $$2Handle$$a2128/21393
000859933 0247_ $$2WOS$$aWOS:000612998200022
000859933 037__ $$aFZJ-2019-00745
000859933 1001_ $$00000-0001-6504-2293$$aOehrl, Simon$$b0$$eCorresponding author
000859933 1112_ $$aISC High Performance 2018$$cFrankfurt$$d2018-06-24 - 2018-06-28$$wGermany
000859933 245__ $$aStreaming Live Neuronal Simulation Data into Visualization and Analysis
000859933 260__ $$aCham$$bSpringer International Publishing$$c2018
000859933 29510 $$aHigh Performance Computing / Yokota, Rio (Editor)  [0000-0001-7573-7873]   ; Cham : Springer International Publishing, 2018, Chapter 18 ; ISSN: 0302-9743=1611-3349 ; ISBN: 978-3-030-02464-2=978-3-030-02465-9 ; doi:10.1007/978-3-030-02465-9
000859933 300__ $$a258 - 272
000859933 3367_ $$2ORCID$$aCONFERENCE_PAPER
000859933 3367_ $$033$$2EndNote$$aConference Paper
000859933 3367_ $$2BibTeX$$aINPROCEEDINGS
000859933 3367_ $$2DRIVER$$aconferenceObject
000859933 3367_ $$2DataCite$$aOutput Types/Conference Paper
000859933 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1563261389_1091
000859933 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$mcontb
000859933 4900_ $$aLecture Notes in Computer Science$$v11203
000859933 500__ $$aArticle attached has a 12 month embargo (until 25.1.2020): https://www.springer.com/de/open-access/authors-rights/self-archiving-policy/2124
000859933 520__ $$aNeuroscientists want to inspect the data their simulations are producing while these are still running. This will on the one hand save them time waiting for results and therefore insight. On the other, it will allow for more efficient use of CPU time if the simulations are being run on supercomputers. If they had access to the data being generated, neuroscientists could monitor it and take counter-actions, e.g., parameter adjustments, should the simulation deviate too much from in-vivo observations or get stuck.As a first step toward this goal, we devise an in situ pipeline tailored to the neuroscientific use case. It is capable of recording and transferring simulation data to an analysis/visualization process, while the simulation is still running. The developed libraries are made publicly available as open source projects. We provide a proof-of-concept integration, coupling the neuronal simulator NEST to basic 2D and 3D visualization.KeywordsNeuroscientific simulation In situ visualization
000859933 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000859933 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x1
000859933 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x2
000859933 536__ $$0G:(DE-Juel1)Helmholtz-SLNS$$aSLNS - SimLab Neuroscience (Helmholtz-SLNS)$$cHelmholtz-SLNS$$x3
000859933 588__ $$aDataset connected to CrossRef Book Series
000859933 7001_ $$00000-0002-0126-9293$$aMüller, Jan$$b1
000859933 7001_ $$00000-0002-8520-8243$$aSchnathmeier, Jan$$b2
000859933 7001_ $$0P:(DE-Juel1)142538$$aEppler, Jochen Martin$$b3
000859933 7001_ $$0P:(DE-Juel1)161525$$aPeyser, Alexander$$b4
000859933 7001_ $$0P:(DE-Juel1)169781$$aPlesser, Hans Ekkehard$$b5
000859933 7001_ $$00000-0003-4785-708X$$aWeyers, Benjamin$$b6
000859933 7001_ $$00000-0002-2642-9134$$aHentschel, Bernd$$b7
000859933 7001_ $$0P:(DE-Juel1)162486$$aKuhlen, Torsten$$b8
000859933 7001_ $$00000-0002-8620-3874$$aVierjahn, Tom$$b9
000859933 770__ $$z978-3-030-02465-9
000859933 773__ $$a10.1007/978-3-030-02465-9_18
000859933 8564_ $$uhttps://juser.fz-juelich.de/record/859933/files/paper_13.pdf$$yPublished on 2019-01-25. Available in OpenAccess from 2020-01-25.
000859933 8564_ $$uhttps://juser.fz-juelich.de/record/859933/files/paper_13.pdf?subformat=pdfa$$xpdfa$$yPublished on 2019-01-25. Available in OpenAccess from 2020-01-25.
000859933 909CO $$ooai:juser.fz-juelich.de:859933$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000859933 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142538$$aForschungszentrum Jülich$$b3$$kFZJ
000859933 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161525$$aForschungszentrum Jülich$$b4$$kFZJ
000859933 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169781$$aForschungszentrum Jülich$$b5$$kFZJ
000859933 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000859933 9131_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x1
000859933 9141_ $$y2018
000859933 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000859933 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000859933 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000859933 920__ $$lyes
000859933 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000859933 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x1
000859933 980__ $$acontrib
000859933 980__ $$aVDB
000859933 980__ $$acontb
000859933 980__ $$aI:(DE-Juel1)JSC-20090406
000859933 980__ $$aI:(DE-82)080012_20140620
000859933 980__ $$aUNRESTRICTED
000859933 9801_ $$aFullTexts