Home > Publications database > Streaming Live Neuronal Simulation Data into Visualization and Analysis > print |
001 | 859933 | ||
005 | 20210315110836.0 | ||
020 | _ | _ | |a 978-3-030-02464-2 (print) |
020 | _ | _ | |a 978-3-030-02465-9 (electronic) |
024 | 7 | _ | |a 10.1007/978-3-030-02465-9_18 |2 doi |
024 | 7 | _ | |a 0302-9743 |2 ISSN |
024 | 7 | _ | |a 1611-3349 |2 ISSN |
024 | 7 | _ | |a 2128/21393 |2 Handle |
024 | 7 | _ | |a WOS:000612998200022 |2 WOS |
037 | _ | _ | |a FZJ-2019-00745 |
100 | 1 | _ | |a Oehrl, Simon |0 0000-0001-6504-2293 |b 0 |e Corresponding author |
111 | 2 | _ | |a ISC High Performance 2018 |c Frankfurt |d 2018-06-24 - 2018-06-28 |w Germany |
245 | _ | _ | |a Streaming Live Neuronal Simulation Data into Visualization and Analysis |
260 | _ | _ | |a Cham |c 2018 |b Springer International Publishing |
295 | 1 | 0 | |a High Performance Computing / Yokota, Rio (Editor) [0000-0001-7573-7873] ; Cham : Springer International Publishing, 2018, Chapter 18 ; ISSN: 0302-9743=1611-3349 ; ISBN: 978-3-030-02464-2=978-3-030-02465-9 ; doi:10.1007/978-3-030-02465-9 |
300 | _ | _ | |a 258 - 272 |
336 | 7 | _ | |a CONFERENCE_PAPER |2 ORCID |
336 | 7 | _ | |a Conference Paper |0 33 |2 EndNote |
336 | 7 | _ | |a INPROCEEDINGS |2 BibTeX |
336 | 7 | _ | |a conferenceObject |2 DRIVER |
336 | 7 | _ | |a Output Types/Conference Paper |2 DataCite |
336 | 7 | _ | |a Contribution to a conference proceedings |b contrib |m contrib |0 PUB:(DE-HGF)8 |s 1563261389_1091 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a Contribution to a book |0 PUB:(DE-HGF)7 |2 PUB:(DE-HGF) |m contb |
490 | 0 | _ | |a Lecture Notes in Computer Science |v 11203 |
500 | _ | _ | |a Article attached has a 12 month embargo (until 25.1.2020): https://www.springer.com/de/open-access/authors-rights/self-archiving-policy/2124 |
520 | _ | _ | |a Neuroscientists want to inspect the data their simulations are producing while these are still running. This will on the one hand save them time waiting for results and therefore insight. On the other, it will allow for more efficient use of CPU time if the simulations are being run on supercomputers. If they had access to the data being generated, neuroscientists could monitor it and take counter-actions, e.g., parameter adjustments, should the simulation deviate too much from in-vivo observations or get stuck.As a first step toward this goal, we devise an in situ pipeline tailored to the neuroscientific use case. It is capable of recording and transferring simulation data to an analysis/visualization process, while the simulation is still running. The developed libraries are made publicly available as open source projects. We provide a proof-of-concept integration, coupling the neuronal simulator NEST to basic 2D and 3D visualization.KeywordsNeuroscientific simulation In situ visualization |
536 | _ | _ | |a 511 - Computational Science and Mathematical Methods (POF3-511) |0 G:(DE-HGF)POF3-511 |c POF3-511 |f POF III |x 0 |
536 | _ | _ | |a 574 - Theory, modelling and simulation (POF3-574) |0 G:(DE-HGF)POF3-574 |c POF3-574 |f POF III |x 1 |
536 | _ | _ | |a HBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907) |0 G:(EU-Grant)785907 |c 785907 |f H2020-SGA-FETFLAG-HBP-2017 |x 2 |
536 | _ | _ | |a SLNS - SimLab Neuroscience (Helmholtz-SLNS) |0 G:(DE-Juel1)Helmholtz-SLNS |c Helmholtz-SLNS |x 3 |
588 | _ | _ | |a Dataset connected to CrossRef Book Series |
700 | 1 | _ | |a Müller, Jan |0 0000-0002-0126-9293 |b 1 |
700 | 1 | _ | |a Schnathmeier, Jan |0 0000-0002-8520-8243 |b 2 |
700 | 1 | _ | |a Eppler, Jochen Martin |0 P:(DE-Juel1)142538 |b 3 |
700 | 1 | _ | |a Peyser, Alexander |0 P:(DE-Juel1)161525 |b 4 |
700 | 1 | _ | |a Plesser, Hans Ekkehard |0 P:(DE-Juel1)169781 |b 5 |
700 | 1 | _ | |a Weyers, Benjamin |0 0000-0003-4785-708X |b 6 |
700 | 1 | _ | |a Hentschel, Bernd |0 0000-0002-2642-9134 |b 7 |
700 | 1 | _ | |a Kuhlen, Torsten |0 P:(DE-Juel1)162486 |b 8 |
700 | 1 | _ | |a Vierjahn, Tom |0 0000-0002-8620-3874 |b 9 |
770 | _ | _ | |z 978-3-030-02465-9 |
773 | _ | _ | |a 10.1007/978-3-030-02465-9_18 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/859933/files/paper_13.pdf |y Published on 2019-01-25. Available in OpenAccess from 2020-01-25. |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/859933/files/paper_13.pdf?subformat=pdfa |x pdfa |y Published on 2019-01-25. Available in OpenAccess from 2020-01-25. |
909 | C | O | |o oai:juser.fz-juelich.de:859933 |p openaire |p open_access |p driver |p VDB |p ec_fundedresources |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)142538 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)161525 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)169781 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |1 G:(DE-HGF)POF3-510 |0 G:(DE-HGF)POF3-511 |2 G:(DE-HGF)POF3-500 |v Computational Science and Mathematical Methods |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |l Supercomputing & Big Data |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Decoding the Human Brain |1 G:(DE-HGF)POF3-570 |0 G:(DE-HGF)POF3-574 |2 G:(DE-HGF)POF3-500 |v Theory, modelling and simulation |x 1 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2018 |
915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
920 | 1 | _ | |0 I:(DE-82)080012_20140620 |k JARA-HPC |l JARA - HPC |x 1 |
980 | _ | _ | |a contrib |
980 | _ | _ | |a VDB |
980 | _ | _ | |a contb |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | _ | _ | |a I:(DE-82)080012_20140620 |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|