001     859949
005     20240712112840.0
024 7 _ |a 10.1149/2.0741902jes
|2 doi
024 7 _ |a 0013-4651
|2 ISSN
024 7 _ |a 0096-4743
|2 ISSN
024 7 _ |a 0096-4786
|2 ISSN
024 7 _ |a 1945-6859
|2 ISSN
024 7 _ |a 1945-7111
|2 ISSN
024 7 _ |a 2002-2015
|2 ISSN
024 7 _ |a 2156-7395
|2 ISSN
024 7 _ |a WOS:000456025100001
|2 WOS
024 7 _ |a 2128/24163
|2 Handle
037 _ _ |a FZJ-2019-00755
041 _ _ |a English
082 _ _ |a 660
100 1 _ |a Vibhu, V.
|0 P:(DE-Juel1)169490
|b 0
|e Corresponding author
245 _ _ |a High Performance LSC Infiltrated LSCF Oxygen Electrode for High Temperature Steam Electrolysis Application
260 _ _ |a Pennington, NJ
|c 2019
|b Electrochemical Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1582018295_521
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a This work is focused on La0.6Sr0.4CoO3-δ (LSC) infiltrated La0.58Sr0.4Co0.2Fe0.8O3-δ (LSCF) oxygen electrode for high temperature steam electrolysis aimed at efficient hydrogen production. In this respect, first the chemical and structural stability of both LSCF and LSC materials are investigated as a function of temperature under air and oxygen. The electrochemical performance of LSC infiltrated LSCF oxygen electrode is then investigated for steam electrolysis and compared with conventional LSCF electrode. The symmetrical half-cell as well as single cell containing LSCF oxygen electrode with and without LSC infiltration are characterized using electrochemical impedance spectroscopy in the temperature range 700–900°C. It is observed that the symmetrical cell as well as single cells with LSC infiltrated LSCF electrode performs better than the conventional LSCF electrode. The degradation experiments were performed with the symmetrical cells under polarizations. Post-test analysis using SEM-EDX was performed to investigate the changes of electrode and electrode/electrolyte interface microstructures
536 _ _ |a 135 - Fuel Cells (POF3-135)
|0 G:(DE-HGF)POF3-135
|c POF3-135
|f POF III
|x 0
536 _ _ |0 G:(DE-Juel1)HITEC-20170406
|x 1
|c HITEC-20170406
|a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Yildiz, S.
|0 P:(DE-Juel1)157881
|b 1
700 1 _ |a Vinke, I. C.
|0 P:(DE-Juel1)129936
|b 2
700 1 _ |a Eichel, Rüdiger-A.
|0 P:(DE-Juel1)156123
|b 3
700 1 _ |a Bassat, J.-M.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a de Haart, L. G. J.
|0 P:(DE-Juel1)129952
|b 5
773 _ _ |a 10.1149/2.0741902jes
|g Vol. 166, no. 2, p. F102 - F108
|0 PERI:(DE-600)2002179-3
|n 2
|p F102 - F108
|t Journal of the Electrochemical Society
|v 166
|y 2019
|x 1945-7111
856 4 _ |u https://juser.fz-juelich.de/record/859949/files/J.%20Electrochem.%20Soc.-2019-Vibhu-F102-8.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/859949/files/J.%20Electrochem.%20Soc.-2019-Vibhu-F102-8.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:859949
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)169490
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-Juel1)169490
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129936
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)156123
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 3
|6 P:(DE-Juel1)156123
910 1 _ |a CNRS, Universite Bordeaux
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129952
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-135
|2 G:(DE-HGF)POF3-100
|v Fuel Cells
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J ELECTROCHEM SOC : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-9-20110218
|k IEK-9
|l Grundlagen der Elektrochemie
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-9-20110218
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IET-1-20110218


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21