000859963 001__ 859963
000859963 005__ 20210130000427.0
000859963 0247_ $$2doi$$a10.1016/j.ebiom.2018.11.024
000859963 0247_ $$2Handle$$a2128/21505
000859963 0247_ $$2pmid$$apmid:30555045
000859963 0247_ $$2WOS$$aWOS:000456677400024
000859963 0247_ $$2altmetric$$aaltmetric:54874742
000859963 037__ $$aFZJ-2019-00769
000859963 082__ $$a610
000859963 1001_ $$0P:(DE-HGF)0$$aPérez-Mato, María$$b0
000859963 245__ $$aBlood glutamate EAAT2-cell grabbing therapy in cerebral ischemia
000859963 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2019
000859963 3367_ $$2DRIVER$$aarticle
000859963 3367_ $$2DataCite$$aOutput Types/Journal article
000859963 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1548928454_21932
000859963 3367_ $$2BibTeX$$aARTICLE
000859963 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000859963 3367_ $$00$$2EndNote$$aJournal Article
000859963 520__ $$aBackgroundExcitatory amino acid transporter 2 (EAAT2) plays a pivotal role in glutamate clearance in the adult brain, thereby preventing excitotoxic effects. Considering the high efficacy of EAAT2 for glutamate uptake, we hypothesized that the expression of this transporter in mesenchymal stem cells (MSCs) for systemic administration could yield a cell-based glutamate-grabbing therapy, combining the intrinsic properties of these cells with excitotoxic protection.MethodsTo address this hypothesis, EAAT2-encoding cDNA was introduced into MSCs and human embryonic kidney 293 cells (HEK cells) as the control cell line. EAAT2 expression and functionality were evaluated by in vitro assays. Blood glutamate-grabbing activity was tested in healthy and ischemic rat models treated with 3 × 106 and 9 × 106 cells/animal.FindingsThe expression of EAAT2 in both cell types conferred the expected glutamate-grabbing activity in in vitro and in vivo studies. The functional improvement observed in ischemic rats treated with EAAT2–HEK at low dose, confirmed that this effect was indeed mediated by the glutamate-grabbing activity associated with EAAT2 functionality. Unexpectedly, both cell doses of non-transfected MSCs induced higher protection than transfected EAAT2–MSCs by another mechanism independent of the glutamate-grabbing capacity.InterpretationAlthough the transfection procedure most likely interferes with some of the intrinsic protective mechanisms of mesenchymal cells, the results show that the induced expression of EAAT2 in cells represents a novel alternative to mitigate the excitotoxic effects of glutamate and paves the way to combine this strategy with current cell therapies for cerebral ischemia.
000859963 536__ $$0G:(DE-HGF)POF3-552$$a552 - Engineering Cell Function (POF3-552)$$cPOF3-552$$fPOF III$$x0
000859963 588__ $$aDataset connected to CrossRef
000859963 7001_ $$0P:(DE-HGF)0$$aIglesias-Rey, Ramón$$b1
000859963 7001_ $$0P:(DE-HGF)0$$aVieites-Prado, Alba$$b2
000859963 7001_ $$0P:(DE-HGF)0$$aDopico-López, Antonio$$b3
000859963 7001_ $$0P:(DE-HGF)0$$aArgibay, Bárbara$$b4
000859963 7001_ $$0P:(DE-HGF)0$$aFernández-Susavila, Héctor$$b5
000859963 7001_ $$0P:(DE-HGF)0$$ada Silva-Candal, Andrés$$b6
000859963 7001_ $$0P:(DE-HGF)0$$aPérez-Díaz, Amparo$$b7
000859963 7001_ $$0P:(DE-HGF)0$$aCorrea-Paz, Clara$$b8
000859963 7001_ $$0P:(DE-HGF)0$$aGünther, Anne$$b9
000859963 7001_ $$0P:(DE-HGF)0$$aÁvila-Gómez, Paulo$$b10
000859963 7001_ $$0P:(DE-HGF)0$$aIsabel Loza, M.$$b11
000859963 7001_ $$0P:(DE-Juel1)131911$$aBaumann, A.$$b12$$ufzj
000859963 7001_ $$0P:(DE-HGF)0$$aCastillo, José$$b13
000859963 7001_ $$0P:(DE-HGF)0$$aSobrino, Tomás$$b14$$eCorresponding author
000859963 7001_ $$0P:(DE-HGF)0$$aCampos, Francisco$$b15$$eCorresponding author
000859963 773__ $$0PERI:(DE-600)2799017-5$$a10.1016/j.ebiom.2018.11.024$$gp. S2352396418305176$$p118-131$$tEBioMedicine$$v39$$x2352-3964$$y2019
000859963 8564_ $$uhttps://juser.fz-juelich.de/record/859963/files/1-s2.0-S2352396418305176-main.pdf$$yOpenAccess
000859963 8564_ $$uhttps://juser.fz-juelich.de/record/859963/files/1-s2.0-S2352396418305176-main.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000859963 909CO $$ooai:juser.fz-juelich.de:859963$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000859963 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131911$$aForschungszentrum Jülich$$b12$$kFZJ
000859963 9131_ $$0G:(DE-HGF)POF3-552$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vEngineering Cell Function$$x0
000859963 9141_ $$y2019
000859963 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000859963 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000859963 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEBIOMEDICINE : 2017
000859963 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000859963 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000859963 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000859963 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000859963 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000859963 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review
000859963 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bEBIOMEDICINE : 2017
000859963 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000859963 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000859963 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000859963 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000859963 920__ $$lyes
000859963 9201_ $$0I:(DE-Juel1)ICS-4-20110106$$kICS-4$$lZelluläre Biophysik$$x0
000859963 9801_ $$aFullTexts
000859963 980__ $$ajournal
000859963 980__ $$aVDB
000859963 980__ $$aUNRESTRICTED
000859963 980__ $$aI:(DE-Juel1)ICS-4-20110106
000859963 981__ $$aI:(DE-Juel1)IBI-1-20200312