| Hauptseite > Publikationsdatenbank > Towards Prediction of Turbulent Flows at High Reynolds Numbers Using High Performance Computing Data and Deep Learning > print |
| 001 | 859970 | ||
| 005 | 20210511092514.0 | ||
| 020 | _ | _ | |a 978-3-030-02464-2 (print) |
| 020 | _ | _ | |a 978-3-030-02465-9 (electronic) |
| 024 | 7 | _ | |a 10.1007/978-3-030-02465-9_44 |2 doi |
| 024 | 7 | _ | |a 0302-9743 |2 ISSN |
| 024 | 7 | _ | |a 1611-3349 |2 ISSN |
| 024 | 7 | _ | |a WOS:000612998200051 |2 WOS |
| 037 | _ | _ | |a FZJ-2019-00776 |
| 100 | 1 | _ | |a Bode, Mathis |0 0000-0001-9922-9742 |b 0 |
| 111 | 2 | _ | |a International Conference on High Performance Computing |c Frankfurt |d 2018-06-24 - 2018-06-28 |w Germany |
| 245 | _ | _ | |a Towards Prediction of Turbulent Flows at High Reynolds Numbers Using High Performance Computing Data and Deep Learning |
| 260 | _ | _ | |a Cham |c 2018 |b Springer International Publishing |
| 295 | 1 | 0 | |a High Performance Computing |
| 300 | _ | _ | |a 614 - 623 |
| 336 | 7 | _ | |a CONFERENCE_PAPER |2 ORCID |
| 336 | 7 | _ | |a Conference Paper |0 33 |2 EndNote |
| 336 | 7 | _ | |a INPROCEEDINGS |2 BibTeX |
| 336 | 7 | _ | |a conferenceObject |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Conference Paper |2 DataCite |
| 336 | 7 | _ | |a Contribution to a conference proceedings |b contrib |m contrib |0 PUB:(DE-HGF)8 |s 1620717880_29207 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a Contribution to a book |0 PUB:(DE-HGF)7 |2 PUB:(DE-HGF) |m contb |
| 490 | 0 | _ | |a Lecture Notes in Computer Science |v 11203 |
| 520 | _ | _ | |a In this paper, deep learning (DL) methods are evaluated in the context of turbulent flows. Various generative adversarial networks (GANs) are discussed with respect to their suitability for understanding and modeling turbulence. Wasserstein GANs (WGANs) are then chosen to generate small-scale turbulence. Highly resolved direct numerical simulation (DNS) turbulent data is used for training the WGANs and the effect of network parameters, such as learning rate and loss function, is studied. Qualitatively good agreement between DNS input data and generated turbulent structures is shown. A quantitative statistical assessment of the predicted turbulent fields is performed. |
| 536 | _ | _ | |a 511 - Computational Science and Mathematical Methods (POF3-511) |0 G:(DE-HGF)POF3-511 |c POF3-511 |f POF III |x 0 |
| 536 | _ | _ | |a Using deep learning to predict statistics of turbulent flows at high Reynolds numbers (jhpc55_20180501) |0 G:(DE-Juel1)jhpc55_20180501 |c jhpc55_20180501 |f Using deep learning to predict statistics of turbulent flows at high Reynolds numbers |x 1 |
| 588 | _ | _ | |a Dataset connected to CrossRef Book Series |
| 700 | 1 | _ | |a Gauding, Michael |0 0000-0003-0038-5249 |b 1 |e Corresponding author |
| 700 | 1 | _ | |a Göbbert, Jens Henrik |0 P:(DE-Juel1)168541 |b 2 |
| 700 | 1 | _ | |a Liao, Baohao |0 0000-0001-8335-4573 |b 3 |
| 700 | 1 | _ | |a Jitsev, Jenia |0 P:(DE-Juel1)158080 |b 4 |
| 700 | 1 | _ | |a Pitsch, Heinz |0 0000-0001-5656-0961 |b 5 |
| 770 | _ | _ | |a ISC High Performance 2018 International Workshops |
| 773 | _ | _ | |a 10.1007/978-3-030-02465-9_44 |
| 909 | C | O | |p VDB |o oai:juser.fz-juelich.de:859970 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)168541 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)158080 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Supercomputing & Big Data |1 G:(DE-HGF)POF3-510 |0 G:(DE-HGF)POF3-511 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-500 |4 G:(DE-HGF)POF |v Computational Science and Mathematical Methods |x 0 |
| 913 | 2 | _ | |a DE-HGF |b Programmungebundene Forschung |l ohne Programm |1 G:(DE-HGF)POF4-890 |0 G:(DE-HGF)POF4-899 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-800 |4 G:(DE-HGF)POF |v ohne Topic |x 0 |
| 914 | 1 | _ | |y 2018 |
| 915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
| 920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
| 980 | _ | _ | |a contrib |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a contb |
| 980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
| 980 | _ | _ | |a UNRESTRICTED |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|