001     859977
005     20240404204705.0
024 7 _ |a 10.1021/acscatal.8b01472
|2 doi
024 7 _ |a WOS:000444364800034
|2 WOS
037 _ _ |a FZJ-2019-00783
082 _ _ |a 540
100 1 _ |a Li, Zhihong
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Understanding the pH-Dependent Reaction Mechanism of a Glycoside Hydrolase Using High-Resolution X-ray and Neutron Crystallographyülcih
260 _ _ |a Washington, DC
|c 2018
|b ACS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1712214509_21204
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Glycoside hydrolases (GHs) commonly use the retaining or inverting mechanisms to hydrolyze carbohydrates, and the rates of catalysis are usually pH dependent. Deeper understanding of these pH-dependent reaction mechanisms is of great importance for protein engineering and drug design. We used high-resolution X-ray crystallography to analyze the sugar ring configurations of an oligosaccharide ligand during hydrolysis for the family 11 GH, and the results support the 1S3 → 4H3 → 4C1 conformational itinerary. These results indicate that sugar ring flexibility may help to distort and break the glycosidic bond. Constant pH molecular dynamics simulations and neutron crystallography demonstrate that the catalytic glutamate residue (E177) has alternate conformational changes to transfer a proton to cleave the glycosidic bond. Furthermore, a neutron crystallography analysis shows that the H-bond length between E177 and its nearby tyrosine residue (Y88) is shortened when the pH increases, preventing E177 from rotating downward and obtaining a proton from the solvent for catalysis. This result indicates that the H-bond length variation may play a key role in the pH-dependent reaction mechanism. In summary, our results demonstrate that both sugar ring flexibility and protein dynamics are important in the pH-dependent reaction mechanism and may help to engineer GHs with different pH optima.
536 _ _ |a 6G15 - FRM II / MLZ (POF3-6G15)
|0 G:(DE-HGF)POF3-6G15
|c POF3-6G15
|f POF III
|x 0
536 _ _ |a 6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)
|0 G:(DE-HGF)POF3-6G4
|c POF3-623
|f POF III
|x 1
536 _ _ |a 6215 - Soft Matter, Health and Life Sciences (POF3-621)
|0 G:(DE-HGF)POF3-6215
|c POF3-621
|f POF III
|x 2
588 _ _ |a Dataset connected to CrossRef
650 2 7 |a Industrial Application
|0 V:(DE-MLZ)SciArea-150
|2 V:(DE-HGF)
|x 0
650 1 7 |a Health and Life
|0 V:(DE-MLZ)GC-130-2016
|2 V:(DE-HGF)
|x 0
693 _ _ |a Forschungs-Neutronenquelle Heinz Maier-Leibnitz
|e BIODIFF: Diffractometer for large unit cells
|f NL1
|1 EXP:(DE-MLZ)FRMII-20140101
|0 EXP:(DE-MLZ)BIODIFF-20140101
|5 EXP:(DE-MLZ)BIODIFF-20140101
|6 EXP:(DE-MLZ)NL1-20140101
|x 0
700 1 _ |a Zhang, Xiaoshuai
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Wang, Qingqing
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Li, Chunran
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Zhang, Nianying
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Zhang, Xinkai
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Xu, Birui
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Ma, Baoliang
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Schrader, Tobias E.
|0 P:(DE-Juel1)138266
|b 8
700 1 _ |a Coates, Leighton
|0 0000-0003-2342-049X
|b 9
700 1 _ |a Kovalevsky, Andrey
|0 0000-0003-4459-9142
|b 10
700 1 _ |a Huang, Yandong
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Wan, Qun
|0 0000-0002-8309-0341
|b 12
|e Corresponding author
773 _ _ |a 10.1021/acscatal.8b01472
|g Vol. 8, no. 9, p. 8058 - 8069
|0 PERI:(DE-600)2584887-2
|n 9
|p 8058 - 8069
|t ACS catalysis
|v 8
|y 2018
|x 2155-5435
856 4 _ |u https://juser.fz-juelich.de/record/859977/files/acscatal.8b01472.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/859977/files/acscatal.8b01472.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:859977
|p VDB:MLZ
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)138266
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF3-6G0
|0 G:(DE-HGF)POF3-6G15
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-600
|4 G:(DE-HGF)POF
|v FRM II / MLZ
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-623
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-600
|4 G:(DE-HGF)POF
|v Facility topic: Neutrons for Research on Condensed Matter
|9 G:(DE-HGF)POF3-6G4
|x 1
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-621
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-600
|4 G:(DE-HGF)POF
|v In-house research on the structure, dynamics and function of matter
|9 G:(DE-HGF)POF3-6215
|x 2
914 1 _ |y 2018
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS CATAL : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b ACS CATAL : 2017
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JCNS-FRM-II-20110218
|k JCNS-FRM-II
|l JCNS-FRM-II
|x 0
920 1 _ |0 I:(DE-Juel1)JCNS-1-20110106
|k JCNS-1
|l Neutronenstreuung
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JCNS-FRM-II-20110218
980 _ _ |a I:(DE-Juel1)JCNS-1-20110106
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21