
The DEEP-ER project:

I/O and resiliency extensions for the

Cluster-Booster architecture

Anke Kreuzer, Norbert Eicker, Estela Suarez*

Jülich Supercomputing Centre (JSC)

Institute for Advanced Simulation (IAS)

Forschungszentrum Jülich GmbH

52425 Jülich, Germany

Email*: e.suarez@fz-juelich.de

Jorge Amaya

Katholieke Universiteit Leuven

BE-3001, Heverlee, Belgium

Raphäel Léger

INRIA Sophia-Antipolis Méditerranée

Sophia-Antipolis, France

Abstract—The recently completed research project DEEP-ER

has developed a variety of hardware and software technologies to
improve the I/O capabilities of next generation high-performance
computers, and to enable applications recovering from the larger
hardware failure rates expected on these machines.

The heterogeneous Cluster-Booster architecture – first intro-
duced in the predecessor DEEP project – has been extended
by a multi-level memory hierarchy employing non-volatile and
network-attached memory devices. Based on this hardware
infrastructure, an I/O and resiliency software stack has been
implemented combining and extending well established libraries
and software tools, and sticking to standard user-interfaces. Real-
world scientific codes have tested the projects’ developments and
demonstrated the improvements achieved without compromising
the portability of the applications.

Index Terms—Exascale; Architecture; Cluster-Booster archi-
tecture; Co-design; Resiliency; I/O; Modular Supercomputing;

I. INTRODUCTION

During the last decade the computing performance of HPC

systems is growing much faster than their memory bandwidth

and capacity [1]. This so-called memory wall is not expected to

disappear in the near future. Additionally, higher failure rates

are predicted for next generation machines due to their huge

number of components. These are two of the main issues most

directly affecting the scientific throughput that can be extracted

from Exascale systems.

The DEEP projects [2] are a series of (by now) three

EC funded projects (DEEP, DEEP-ER, and DEEP-EST) that

address the Exascale computing challenges with their re-

search. All three follow a stringent co-design strategy, in

which full-fledged scientific applications guide the design

and implementation of system hardware and software. Their

requirements, identified by detailed application analysis, guide

all the projects’ developments. The selected codes have also

been adapted to the project platforms and served as a yard-

stick to validate and benchmark the hardware and software

achievements implemented in the course of the projects.

This paper describes the technology developed within the

DEEP-ER project to improve the I/O and resiliency capa-

bilities of HPC systems. In particular, the heterogeneous

Cluster-Booster architecture [3] (first introduced in DEEP) was

extended by a multi-level memory hierarchy. This served as

a foundation of a complete I/O and resiliency software stack.

Section II of this paper presents the DEEP-ER system

architecture, including the underlying Cluster-Booster concept,

the specific hardware configuration of the DEEP-ER prototype,

and its memory hierarchy and technologies. The software

stack is explained in Section III, including the programming

environment already introduced in the predecessor DEEP

project, and – more detailed – the DEEP-ER I/O and resiliency

software developments. The co-design applications are shortly

described in Section IV. A selection of results obtained during

the evaluation of the DEEP-ER concepts are presented in

Section V, while Section VI puts them in context with related

work. Finally, the conclusions of the paper are summarized in

Section VII.

II. SYSTEM ARCHITECTURE

Cluster computing enables building high-performance sy-

stems benefiting from lower-cost of commodity of the shelf

(COTS) components. Traditional, homogeneous clusters are

built by connecting a number of general purpose processors

(e.g. Intel Xeon, AMD Opteron, etc.) by a high speed network

(e.g. InfiniBand or OmniPath). This approach is limited by the

relatively high power consumption and cost per performance

of general purpose processors. Both make a large scale homo-

geneous systems extremely power hungry and costly.

The cluster’s overall energy and cost efficiency can be

improved by adding accelerator devices (e.g. many-core pro-

cessors or general purpose graphic cards, GPGPUs), which

provide higher Flop/s performance per Watt. Standard hetero-

geneous clusters are built attaching one or more accelerators to

each node. However, this accelerated node approach presents

some caveats. An important one is the combined effect of the

accelerators’ dependency on the host CPU and the static arran-

gement of hardware resources, which limits the accessibility

of the accelerators for other applications than the one running









• Persistent task-based checkpointing saves all input

dependencies of a task. When the application is restarted

after a crash, OmpSs transparently identifies the execution

as a recovery and fast-forwards it to the point where the

failure occurred, restoring the appropriate data.

• OmpSs resilient offload is applied specifically to the

offload mechanism developed in the DEEP projects

(Section III-B). The ParaStation process management

daemon has been extended by an interface to query

resiliency-related status information from the MPI layer

and thus also from the OmpSs runtime environment.

ParaStation MPI itself is now able to detect, isolate

and clean up failures of MPI-offloaded tasks, which

can be then independently restarted without requiring a

full application recovery. This enables to recover failed

offloaded tasks without losing the work that had been

performed in parallel by other OmpSs tasks.

Application benchmarks utilizing the third OmpSs resiliency

approach are described in Section V-B.

IV. CO-DESIGN APPLICATIONS

Seven real-world HPC applications were chosen to steer and

evaluate the design of the DEEP-ER hardware and software

developments (Sections II and III), and to benchmark their

functionality and performance. The DEEP-ER applications

come from a wide range of scientific areas, representing the

typically broad user portfolio of a large-scale computer centre.

For the sake of brevity, details are given here only for three of

the codes. Their results (Section V) cover almost all the I/O

and resiliency features developed in DEEP-ER:

• xPic is a simulation code from KU Leuven (Katholieke

Universiteit Leuven) to forecast space weather related

events like e.g. damage of spacecraft electronics or

GPS signal scintillation. It simulates the inter-planetary

plasma using the Moment-Implicit method [15]. Like

most particle-in-cell codes, xPic consists of two parts,

a particle solver and a field solver: The particle solver

calculates the motion of charged particles in response

to the electromagnetic field and the gathering of their

moments (e.g. net current and charge density); the field

solver computes the electromagnetic field evolution in

response to the moments.

• GERShWIN [16] assesses human exposure to electro-

magnetic fields and is provided by Inria (Institut National

de Recherche en Informatique et en Automatique). This

application uses a Discontinuous Galerkin - Time Domain

solver of the 3D Maxwell-Debye equation system [17]

to simulate the propagation of electromagnetic waves

through human tissues. This field of research studies for

instance the effect of wireless communication devices on

head tissues or the implantation of antennas in the human

body for the purpose of monitoring health-related devices.

• FWI [18] is a seismic imaging code developed by the

Barcelona Supercomputing Center (BSC). Seismic ima-

ging uses sound waves to acquire the physical properties

of the subsoil from a set of seismic measurements. The

application starts from a guess (initial model) of the

variables (e.g., sound transmission velocity), the stimulus

introduced, and the recorded signals. For the inversion se-

veral phases of iterative computations (frequency cycles)

are done until the real value of the set of variables being

inverted is reached (with an acceptable error threshold).

Further applications used in DEEP-ER are:

• SKA data analysis pipeline by ASTRON (Netherlands

Institute for Radio Astronomy).

• TurboRvB from CINECA (Consorzio Interuniversitario

del Nord-Est per il Calcolo Automatico).

• SeisSol from LRZ (Leibniz-Rechenzentrum der Bayeris-

chen Akademie der Wissenschaften).

• CHROMA: by the University of Regensburg.

The role of the applications in DEEP-ER is two-fold: on

the one hand, their requirements have provided co-design

input to fix the characteristics of hardware and software

components; on the other hand, the codes have evaluated the

project developments by running different uses cases on the

DEEP-ER prototype. Examples of the co-design influence are

the determination of the amount of memory to be available

per node, the required MPI functionality when offloading

code from one side to the other of the system, or the way

in which the NAM should be addressed. A selection of the

application results achieved by the first three listed codes

(xPic, GERShWIN, and FWI) is presented in the next section.

V. RESULTS

The hardware and software concepts developed in

DEEP-ER have been evaluated using the co-design applica-

tions. Unless stated otherwise, all measurements have been

obtained on the DEEP-ER prototype (Section II-B). The codes

have been used in various simulation scenarios in order to test

different system features (e.g. input parameters leading to more

data communication were used to stress I/O features).

A. I/O application results

The features described in Section III-C have lead to several

I/O improvements in the DEEP-ER applications. Some of

them are shown here since the I/O capabilities have a direct

impact on checkpointing performance. The setup of all I/O

experiments in this section is described in Table II.

Fig. 5 shows the reduction of data writing time for the

GERShWIN application when using SIONlib to collectively

carry out task-local I/O operations into a reduced number of

files. Different use cases where tested, varying the Lagrange

order of the calculations (order three (P3) requires more data

and provides higher precision than order one (P1)). Significant

performance improvements are achieved when using SIONlib:

up to 7.4× faster for P1, and up to 3.7× for P3.

Even with the help of SIONlib, using the file system to

execute I/O operations to the global storage from a large

number of compute nodes may still lead to a bottleneck at the

storage: once the maximum storage bandwidth is reached, the

bandwidth per node decreases when additional nodes partici-

pate in I/O. In DEEP-ER this I/O scalability issue is targeted





xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx

xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx

xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx

x
x
x
x

Fig. 8: xPic testing SCR_PARTNER. Tests done writing check-

points (with CP) or not (w/o CP), for runs when an error occurs

(with) or not (w/o).

xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxxx

Fig. 9: Distributed XOR vs. NAM XOR checkpointing strate-

gies, evaluated with xPic.

parison between the Distributed XOR and the NAM XOR

checkpointing strategies. The latter realizes an up to 3× higher

bandwidth, and leads to much better writing times: between

50% and 65% of time is saved when storing XOR data to the

NAM instead of storing it to the node-local NVMe devices.

An alternative strategy applied in DEEP-ER to increase the

applications’ robustness against system failures is the OmpSs-

offload resiliency functionality (Section III-D2). Fig. 10 shows

the results achieved when testing this approach with the FWI

code, on an Intel Sandy Bridge cluster (MareNostrum 3, at

BSC). An error occurring right before the end of the execution

nearly doubles the FWI runtime if no resiliency technique is

activated. The new OmpSs feature enables up to 42% time

savings (an only 15% longer execution when compared to a

run without failures) and its overhead is negligible (<1%).

TABLE III: Experiment setup for the resiliency measure-

ments.

Experiment xPic SCR xPic NAM FWI

Processed 32 GB per node 20 GB per node 1 GB per node
data 8 GB per CP 2 GB per CP

4 CPs 10 CPs

xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx

xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx

xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx

xxxxxxxxx
xxxxxxxxx
xxxxxxxxx

x
xx
x

Fig. 10: OmpSs task-based resiliency tested with FWI (with

and without (w/o) checkpoints, with error - in worker or slave -

and w/o errors).

VI. RELATED WORK

The work on resiliency presented in this paper is based on

the Scalable Checkpoint-Restart library(SCR) [14]. During the

DEEP-ER project a tight integration of SIONlib [11] into SCR

was established. Task-local I/O as done by SCR typically uses

many independent files. SIONlib concentrates them into single

or few shared files on a parallel file-system, what makes this

type of I/O much more efficient. In DEEP-ER SIONlib is used

as an abstraction-layer for both, buddy checkpointing (similar

to SCR PARTNER) and NAM integration – which might be

seen as an hardware acceleration of SCR’s XOR checkpoin-

ting feature. Both approaches significantly improve the I/O

performance by preventing unnecessary read operations when

creating partner and XOR checkpoints.

A similar approach as SCR is realized in the Fault Tolerance

Interface (FTI) [20]. In the meantime an effort was started to

create a common abstraction of SCR and FTI, to help ap-

plication developers avoiding code-adaptations to the specific

checkpointing tool installed on a given HPC system.

Transparent system level checkpointing is realised in Ber-

keley Lab Checkpoint Restart (BLCR) [21]. In this approach

applications do not have to be modified in order to checkpoint

them like it is necessary in SCR or FTI, where explicit store

and load operations have to be introduced into the codes in

order to create checkpoints with all relevant data. The draw-

back of transparent checkpointing is that checkpoint wills grow

much larger, since the whole memory of the application has to

be dumped onto the underlying storage system. Furthermore,

this type of checkpointing is harder to implement since all MPI

communication has to be brought into a globally consistent

state in order to get properly checkpointed, too.

The same approach as BLCR is used by the Distributed

MultiThreaded Checkpointing (DMTCP) efforts [22] therefore

sharing the pros and cons.

VII. CONCLUSIONS AND OUTLOOK

The DEEP-ER project has introduced several hardware

and software innovations to improve the I/O and resiliency

capabilities of the Cluster-Booster architecture, and of HPC

systems in general. The central component is a multi-level



memory hierarchy employing non-volatile memory (NVM)

devices, locally attached to each of the nodes in the system.

The DEEP-ER I/O software system combines proven file-

systems and libraries with extensions that allow optimal ex-

ploitation of the capabilities of the memory and storage pool.

The project’s resiliency strategy relies on the combination of

complementary functions to recover from different kinds of

errors with reduced overhead. Building upon the infrastructure

provided by the Scalable Checkpoint/Restart library SCR,

the DEEP-ER extensions reduce the checkpointing overhead

keeping the same level of resiliency. An example is the

Buddy checkpointing functionality that employs SIONlib to

optimize SCR_PARTNER. Application resiliency is achieved

with even better performance employing the network-attached

memory (NAM) technology developed in DEEP-ER. This

special “memory node” is globally accessible from all nodes

and enables calculating and storing parity data of application

checkpoints much faster than if done on the nodes themselves.

The achieved improvements in performance and resiliency

have been demonstrated with real-world applications.

The Cluster-Booster architecture – which was first prototy-

ped in the DEEP projects series – has gone into production

in the meantime. The JURECA Cluster, running at JSC in

Germany since 2015 [23], has been recently accompanied by

a KNL-based, 5 PFlop/s Booster. The JURECA Booster is

planned to become available to users in Q1/2018.

The DEEP-ER project is now completed and success-

fully evaluated by external reviewers. Building on its results,

the successor (DEEP-EST) project generalizes the Cluster-

Booster concept to create the Modular Supercomputing ar-

chitecture [24]. It combines any number of compute modules

into a single computing platform. Each compute module is

(as the Cluster and the Booster) a system of a potentially

large size, tailored to the specific needs of a given kind of

applications. To demonstrate its capabilities, a three-module

hardware prototype will be built, covering the needs of both

HPC and high performance data analytics (HPDA) workloads.

ACKNOWLEDGEMENTS

The authors thank all members of the DEEP-ER consortium

for their strong commitment in the project, which led to

several results described in this paper. Special gratitude goes

to J. Schmidt (University of Heidelberg) for the NAM results,

A. Galonska (JSC) for buddy-checkpointing benchmarks, and

S. Rodrı́guez (BSC) OmpSs resiliency tests with FWI.

Part of the research presented here has received funding

from the European Community’s FP7/2007-2013 and H2020-

FETHPC Programmes, under Grant Agreement n◦ 287530

(DEEP), 610476 (DEEP-ER), and n◦ 754304 (DEEP-EST).

The present publication reflects only the authors’ views. The

European Commission is not liable for any use that might be

made of the information contained therein.

REFERENCES

[1] S.A. McKee, Reflections on the Memory Wall, Proceedings of the 1st
Conference on Computing Frontiers (CF ’04), p. 162, (2004) isbn = 1-
58113-741-9, [doi = 10.1145/977091.977115].

[2] http://www.deep-projects.eu
[3] N. Eicker and Th. Lippert, An accelerated Cluster-Architecture for the

Exascale, PARS ’11, PARS-Mitteilungen, Vol. 28, p. 110–119 (2011).
[4] A. Kreuzer, J. Amaya, N. Eicker, E. Suarez, Application performance

on a Cluster-Booster system, Accepted for publication at the 2018 IEEE
International Parallel and Distributed Processing Symposium Workshops
Proceedings (HCW), IPDPS 2018 Conference, Vancouver (2018).

[5] EXTOLL GmbH website: http://www.extoll.de
[6] J. Schmidt, Network Attached Memory, Chapter 4 of the PhD

Thesis: Accelerating Checkpoint/Restart Application Performance in

Large-Scale Systems with Network Attached Memory, Ruprecht-
Karls University Heidelberg (Fakultät für Mathematik und Informa-
tik) http://archiv.ub.uni-heidelberg.de/volltextserver/23800/1/dissertation
juri schmidt publish.pdf

[7] http://www.uni-heidelberg.de/openhmc
[8] N. Eicker, Th. Lippert, Th. Moschny, and E. Suarez, The DEEP Project -

An alternative approach to heterogeneous cluster-computing in the many-

core era, Concurrency and computation: Practice and Experience, Vol. 28,
p. 2394—2411 (2016), [doi = 10.1002/cpe.3562].

[9] A. Duran, E. Ayguadé, R.M. Badia, J. Labarta, L. Martinell, X. Martorell,
and J. Planas, OmpSs: A proposal for programming heterogeneous multi-

core architectures, Parallel Processing Letters, Vol. 21(2), p. 173-193
(2011) [doi = 10.1142/S0129626411000151].

[10] F. Sainz, J. Bellón, V. Beltran, and J. Labarta, Collective Offload

for Heterogeneous Clusters, 2015 IEEE 22nd International Confe-
rence on High Performance Computing (HiPC), p. 376-385 (2015)
[doi = 10.1109/HiPC.2015.20].

[11] W.Frings, F. Wolf, and V. Petkov, Scalable Massively Parallel I/O to

Task-Local Files, Proceedings of SC’09, Portland, USA New York, ACM,

Technical papers, Article. No. 17, p.1-11 (2009) isbn = 978-1-60558-744-

8. http:// juser.fz-juelich.de/record/4447

[12] https://www.beegfs.io/content/

[13] https://www.beegfs.io/wiki/BeeOND

[14] A. Moody, G. Bronevetsky, K. Mohror, B.R. Supinski, Design, Mo-
deling, and Evaluation of a Scalable Multi-level Checkpointing System
Proceedings of the 2010 ACM/IEEE International Conference for High

Performance Computing, Networking, Storage and Analysis, SC ’10,

IEEE Computer Society, p. 1-11 (2010) isbn = 978-1-4244-7559-9,

[doi = 10.1109/SC.2010.18].

[15] S. Markidis and G. Lapenta, Multi-scale simulations of plasma with
iPIC3D, in Mathematics and Computers in Simulation, Vol. 80, No. 7,

pp. 1509-1519 (2010).

[16] R. Leger, D. Alvarez Mallon, A. Duran, S. Lanteri, Adapting a Finite-
Element Type Solver for Bioelectromagnetics to the DEEP-ER Plat-
form, Chapter in Book ”Parallel Computing: On the Road to Exas-

cale“, Advances in Parallel Computing, Vol. 27, p. 349-359 (2015).

[doi = 10.3233/978-1-61499-621-7-349].

[17] S. Lanteri and C. Scheid, Convergence of a Discontinuous Galerkin
scheme for the mixed time domain Maxwell’s equations in disper-
sive media, Article in Journal ”IMA Journal of Numerical Analysis”,

https://hal.archives-ouvertes.fr/hal-00874752, Vol. 33, No. 2, pp. 432-

459 (2013). [doi = 10.1093/imanum/drs008].

[18] http://www.deep-projects.eu/applications/project-applications/

enhancing-oil-exploration.html

[19] http://www.fz-juelich.de/ ias/ jsc/EN/Expertise/Supercomputers/

QPACE3/ node.html

[20] L. Bautista-Gomez, et al. FTI: high performance fault tolerance interface
for hybrid systems. Proceedings of 2011 international conference for high

performance computing, networking, storage and analysis. ACM, 2011.

[21] P. H. Hargrove, J. C. Duell, Berkeley Lab Checkpoint/Restart (BLCR)
for Linux Clusters. Proceedings of SciDAC 2006: June 2006

[22] J. Ansel, K. Arya, G. Cooperman, DMTCP: Transparent Checkpointing
for Cluster Computations and the Desktop, Proceeding of the 23rd

IEEE International Parallel and Distributed Processing Symposium”,

May 2009, Rome, Italy

[23] D. Krause, and Ph. Thörnig, JURECA: General-purpose supercomputer
at Jülich Supercomputing Centre, Journal of large-scale research facili-

ties, Vol.2, A62, (2016), [doi = 10.17815/jlsrf-2-121].

[24] E. Suarez, N. Eicker, Th. Lippert, Supercomputing Evolution at JSC,

Proceedings of the 2018 NIC Symposium, Vol.49, p.1-12, (2018), [online:

http:// juser.fz-juelich.de/record/844072].


