000860037 001__ 860037
000860037 005__ 20210130000436.0
000860037 0247_ $$2doi$$a10.1021/jacs.8b08780
000860037 0247_ $$2ISSN$$a0002-7863
000860037 0247_ $$2ISSN$$a1520-5126
000860037 0247_ $$2ISSN$$a1943-2984
000860037 0247_ $$2pmid$$apmid:30418764
000860037 0247_ $$2WOS$$aWOS:000452693800036
000860037 0247_ $$2altmetric$$aaltmetric:51297254
000860037 037__ $$aFZJ-2019-00834
000860037 082__ $$a540
000860037 1001_ $$0P:(DE-HGF)0$$aLinnenberg, Oliver$$b0
000860037 245__ $$aAddressing Multiple Resistive States of Polyoxovanadates: Conductivity as a Function of Individual Molecular Redox States
000860037 260__ $$aWashington, DC$$bAmerican Chemical Society$$c2018
000860037 3367_ $$2DRIVER$$aarticle
000860037 3367_ $$2DataCite$$aOutput Types/Journal article
000860037 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1548682667_8554
000860037 3367_ $$2BibTeX$$aARTICLE
000860037 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000860037 3367_ $$00$$2EndNote$$aJournal Article
000860037 520__ $$aThe sustainable development of IT-systems requires a quest for novel concepts to address further miniaturization, performance improvement, and energy efficiency of devices. The realization of these goals cannot be achieved without an appropriate functional material. Herein, we target the technologically important electron modification using single polyoxometalate (POM) molecules envisaged as smart successors of materials that are implemented in today’s complementary metal-oxide-semiconductor (CMOS) technology. Lindqvist-type POMs were physisorbed on the Au(111) surface, preserving their structural and electronic characteristics. By applying an external voltage at room temperature, the valence state of the single POM molecule could be changed multiple times through the injection of up to 4 electrons. The molecular electrical conductivity is dependent on the number of vanadium 3d electrons, resulting in several discrete conduction states with increasing conductivity. This fundamentally important finding illustrates the far-reaching opportunities for POM molecules in the area of multiple-state resistive (memristive) switching.
000860037 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000860037 588__ $$aDataset connected to CrossRef
000860037 7001_ $$0P:(DE-Juel1)145323$$aMoors, Marco$$b1
000860037 7001_ $$0P:(DE-HGF)0$$aNotario-Estévez, Almudena$$b2
000860037 7001_ $$00000-0003-0322-6796$$aLópez, Xavier$$b3
000860037 7001_ $$00000-0001-8114-6658$$ade Graaf, Coen$$b4
000860037 7001_ $$0P:(DE-HGF)0$$aPeter, Sophia$$b5
000860037 7001_ $$0P:(DE-Juel1)159254$$aBaeumer, Christoph$$b6
000860037 7001_ $$0P:(DE-Juel1)131022$$aWaser, R.$$b7
000860037 7001_ $$0P:(DE-HGF)0$$aMonakhov, Kirill Yu.$$b8$$eCorresponding author
000860037 773__ $$0PERI:(DE-600)1472210-0$$a10.1021/jacs.8b08780$$gVol. 140, no. 48, p. 16635 - 16640$$n48$$p16635 - 16640$$tJournal of the American Chemical Society$$v140$$x1520-5126$$y2018
000860037 8564_ $$uhttps://juser.fz-juelich.de/record/860037/files/jacs.8b08780.pdf$$yRestricted
000860037 8564_ $$uhttps://juser.fz-juelich.de/record/860037/files/jacs.8b08780.pdf?subformat=pdfa$$xpdfa$$yRestricted
000860037 909CO $$ooai:juser.fz-juelich.de:860037$$pVDB
000860037 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145323$$aForschungszentrum Jülich$$b1$$kFZJ
000860037 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159254$$aForschungszentrum Jülich$$b6$$kFZJ
000860037 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131022$$aForschungszentrum Jülich$$b7$$kFZJ
000860037 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000860037 9141_ $$y2018
000860037 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000860037 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ AM CHEM SOC : 2017
000860037 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000860037 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000860037 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000860037 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000860037 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000860037 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000860037 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000860037 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000860037 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000860037 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000860037 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000860037 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000860037 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bJ AM CHEM SOC : 2017
000860037 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000860037 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000860037 980__ $$ajournal
000860037 980__ $$aVDB
000860037 980__ $$aI:(DE-Juel1)PGI-7-20110106
000860037 980__ $$aI:(DE-82)080009_20140620
000860037 980__ $$aUNRESTRICTED