Home > Publications database > Addressing Multiple Resistive States of Polyoxovanadates: Conductivity as a Function of Individual Molecular Redox States > print |
001 | 860037 | ||
005 | 20210130000436.0 | ||
024 | 7 | _ | |a 10.1021/jacs.8b08780 |2 doi |
024 | 7 | _ | |a 0002-7863 |2 ISSN |
024 | 7 | _ | |a 1520-5126 |2 ISSN |
024 | 7 | _ | |a 1943-2984 |2 ISSN |
024 | 7 | _ | |a pmid:30418764 |2 pmid |
024 | 7 | _ | |a WOS:000452693800036 |2 WOS |
024 | 7 | _ | |a altmetric:51297254 |2 altmetric |
037 | _ | _ | |a FZJ-2019-00834 |
082 | _ | _ | |a 540 |
100 | 1 | _ | |a Linnenberg, Oliver |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Addressing Multiple Resistive States of Polyoxovanadates: Conductivity as a Function of Individual Molecular Redox States |
260 | _ | _ | |a Washington, DC |c 2018 |b American Chemical Society |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1548682667_8554 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The sustainable development of IT-systems requires a quest for novel concepts to address further miniaturization, performance improvement, and energy efficiency of devices. The realization of these goals cannot be achieved without an appropriate functional material. Herein, we target the technologically important electron modification using single polyoxometalate (POM) molecules envisaged as smart successors of materials that are implemented in today’s complementary metal-oxide-semiconductor (CMOS) technology. Lindqvist-type POMs were physisorbed on the Au(111) surface, preserving their structural and electronic characteristics. By applying an external voltage at room temperature, the valence state of the single POM molecule could be changed multiple times through the injection of up to 4 electrons. The molecular electrical conductivity is dependent on the number of vanadium 3d electrons, resulting in several discrete conduction states with increasing conductivity. This fundamentally important finding illustrates the far-reaching opportunities for POM molecules in the area of multiple-state resistive (memristive) switching. |
536 | _ | _ | |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521) |0 G:(DE-HGF)POF3-521 |c POF3-521 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Moors, Marco |0 P:(DE-Juel1)145323 |b 1 |
700 | 1 | _ | |a Notario-Estévez, Almudena |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a López, Xavier |0 0000-0003-0322-6796 |b 3 |
700 | 1 | _ | |a de Graaf, Coen |0 0000-0001-8114-6658 |b 4 |
700 | 1 | _ | |a Peter, Sophia |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Baeumer, Christoph |0 P:(DE-Juel1)159254 |b 6 |
700 | 1 | _ | |a Waser, R. |0 P:(DE-Juel1)131022 |b 7 |
700 | 1 | _ | |a Monakhov, Kirill Yu. |0 P:(DE-HGF)0 |b 8 |e Corresponding author |
773 | _ | _ | |a 10.1021/jacs.8b08780 |g Vol. 140, no. 48, p. 16635 - 16640 |0 PERI:(DE-600)1472210-0 |n 48 |p 16635 - 16640 |t Journal of the American Chemical Society |v 140 |y 2018 |x 1520-5126 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/860037/files/jacs.8b08780.pdf |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/860037/files/jacs.8b08780.pdf?subformat=pdfa |x pdfa |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:860037 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)145323 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)159254 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)131022 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-520 |0 G:(DE-HGF)POF3-521 |2 G:(DE-HGF)POF3-500 |v Controlling Electron Charge-Based Phenomena |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2018 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J AM CHEM SOC : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |
915 | _ | _ | |a IF >= 10 |0 StatID:(DE-HGF)9910 |2 StatID |b J AM CHEM SOC : 2017 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-7-20110106 |k PGI-7 |l Elektronische Materialien |x 0 |
920 | 1 | _ | |0 I:(DE-82)080009_20140620 |k JARA-FIT |l JARA-FIT |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)PGI-7-20110106 |
980 | _ | _ | |a I:(DE-82)080009_20140620 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|