000860087 001__ 860087
000860087 005__ 20210130000439.0
000860087 037__ $$aFZJ-2019-00873
000860087 041__ $$aEnglish
000860087 1001_ $$0P:(DE-Juel1)165733$$aKoller, Robert$$b0$$eCorresponding author$$ufzj
000860087 1112_ $$a5th International Plant Phenotyping Symposium$$cAdelaide$$d2018-10-02 - 2018-10-05$$wAustralia
000860087 245__ $$aPhenotyping spatial and temporal dynamics of roots by Magnetic Resonance Imaging and Positron Emission Tomography
000860087 260__ $$c2018
000860087 3367_ $$033$$2EndNote$$aConference Paper
000860087 3367_ $$2DataCite$$aOther
000860087 3367_ $$2BibTeX$$aINPROCEEDINGS
000860087 3367_ $$2DRIVER$$aconferenceObject
000860087 3367_ $$2ORCID$$aLECTURE_SPEECH
000860087 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1548765187_11949$$xAfter Call
000860087 520__ $$aDue to the opaque nature of soil, a direct observation of belowground processes is not possible. Major progress in the analysis of belowground processes on individual plants has been made by the application of non-destructive imaging methods including Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET). MRI allows for repetitive measurements of roots growing in soil and facilitates quantification of root system architecture traits. PET, on the other hand, opens a door to analyze dynamic physiological processes in plants such as long-distance carbon transport in an also repeatable manner. Combining MRI with PET enables monitoring of carbon tracer allocation along the transport paths (e.g. roots visualized by MRI) into active sink structures such as nodules. We will highlight our approaches for gathering quantitative data from both image-based technologies. In particular the combination of MRI and PET has high potential for gaining deeper insights into dynamics of root growth and, for example, interactions with microbes for revealing novel traits demanded in breeding programs for future crops.
000860087 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x0
000860087 7001_ $$0P:(DE-Juel1)129360$$aMetzner, Ralf$$b1$$ufzj
000860087 7001_ $$0P:(DE-Juel1)129425$$avan Dusschoten, Dagmar$$b2$$ufzj
000860087 7001_ $$0P:(DE-HGF)0$$aPflugfelder, Daniel$$b3
000860087 7001_ $$0P:(DE-Juel1)5963$$aBühler, Jonas$$b4$$ufzj
000860087 7001_ $$0P:(DE-Juel1)129333$$aHuber, Gregor$$b5$$ufzj
000860087 7001_ $$0P:(DE-Juel1)129303$$aChlubek, Antonia$$b6$$ufzj
000860087 7001_ $$0P:(DE-Juel1)129336$$aJahnke, Siegfried$$b7$$ufzj
000860087 909CO $$ooai:juser.fz-juelich.de:860087$$pVDB
000860087 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165733$$aForschungszentrum Jülich$$b0$$kFZJ
000860087 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129360$$aForschungszentrum Jülich$$b1$$kFZJ
000860087 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129425$$aForschungszentrum Jülich$$b2$$kFZJ
000860087 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b3$$kFZJ
000860087 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)5963$$aForschungszentrum Jülich$$b4$$kFZJ
000860087 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129333$$aForschungszentrum Jülich$$b5$$kFZJ
000860087 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129303$$aForschungszentrum Jülich$$b6$$kFZJ
000860087 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129336$$aForschungszentrum Jülich$$b7$$kFZJ
000860087 9131_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000860087 9141_ $$y2018
000860087 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000860087 980__ $$aconf
000860087 980__ $$aVDB
000860087 980__ $$aI:(DE-Juel1)IBG-2-20101118
000860087 980__ $$aUNRESTRICTED