001     860087
005     20210130000439.0
037 _ _ |a FZJ-2019-00873
041 _ _ |a English
100 1 _ |a Koller, Robert
|0 P:(DE-Juel1)165733
|b 0
|e Corresponding author
|u fzj
111 2 _ |a 5th International Plant Phenotyping Symposium
|c Adelaide
|d 2018-10-02 - 2018-10-05
|w Australia
245 _ _ |a Phenotyping spatial and temporal dynamics of roots by Magnetic Resonance Imaging and Positron Emission Tomography
260 _ _ |c 2018
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1548765187_11949
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a Due to the opaque nature of soil, a direct observation of belowground processes is not possible. Major progress in the analysis of belowground processes on individual plants has been made by the application of non-destructive imaging methods including Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET). MRI allows for repetitive measurements of roots growing in soil and facilitates quantification of root system architecture traits. PET, on the other hand, opens a door to analyze dynamic physiological processes in plants such as long-distance carbon transport in an also repeatable manner. Combining MRI with PET enables monitoring of carbon tracer allocation along the transport paths (e.g. roots visualized by MRI) into active sink structures such as nodules. We will highlight our approaches for gathering quantitative data from both image-based technologies. In particular the combination of MRI and PET has high potential for gaining deeper insights into dynamics of root growth and, for example, interactions with microbes for revealing novel traits demanded in breeding programs for future crops.
536 _ _ |a 582 - Plant Science (POF3-582)
|0 G:(DE-HGF)POF3-582
|c POF3-582
|f POF III
|x 0
700 1 _ |a Metzner, Ralf
|0 P:(DE-Juel1)129360
|b 1
|u fzj
700 1 _ |a van Dusschoten, Dagmar
|0 P:(DE-Juel1)129425
|b 2
|u fzj
700 1 _ |a Pflugfelder, Daniel
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Bühler, Jonas
|0 P:(DE-Juel1)5963
|b 4
|u fzj
700 1 _ |a Huber, Gregor
|0 P:(DE-Juel1)129333
|b 5
|u fzj
700 1 _ |a Chlubek, Antonia
|0 P:(DE-Juel1)129303
|b 6
|u fzj
700 1 _ |a Jahnke, Siegfried
|0 P:(DE-Juel1)129336
|b 7
|u fzj
909 C O |o oai:juser.fz-juelich.de:860087
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)165733
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129360
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129425
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)5963
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129333
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129303
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)129336
913 1 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-582
|2 G:(DE-HGF)POF3-500
|v Plant Science
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21