Home > Publications database > Structure of the SLy1 SAM homodimer reveals a new interface for SAM domain self-association > print |
001 | 860088 | ||
005 | 20220930130206.0 | ||
024 | 7 | _ | |a 10.1038/s41598-018-37185-3 |2 doi |
024 | 7 | _ | |a 2128/21426 |2 Handle |
024 | 7 | _ | |a pmid:30631134 |2 pmid |
024 | 7 | _ | |a WOS:000455352400037 |2 WOS |
037 | _ | _ | |a FZJ-2019-00874 |
082 | _ | _ | |a 600 |
100 | 1 | _ | |a Kukuk, Laura |0 P:(DE-Juel1)159147 |b 0 |
245 | _ | _ | |a Structure of the SLy1 SAM homodimer reveals a new interface for SAM domain self-association |
260 | _ | _ | |a [London] |c 2019 |b Macmillan Publishers Limited, part of Springer Nature |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1548765249_11949 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Sterile alpha motif (SAM) domains are protein interaction modules that are involved in a diverse range of biological functions such as transcriptional and translational regulation, cellular signalling, and regulation of developmental processes. SH3 domain-containing protein expressed in lymphocytes 1 (SLy1) is involved in immune regulation and contains a SAM domain of unknown function. In this report, the structure of the SLy1 SAM domain was solved and revealed that this SAM domain forms a symmetric homodimer through a novel interface. The interface consists primarily of the two long C-terminal helices, α5 and α5′, of the domains packing against each other. The dimerization is characterized by a dissociation constant in the lower micromolar range. A SLy1 SAM domain construct with an extended N-terminus containing five additional amino acids of the SLy1 sequence further increases the stability of the homodimer, making the SLy1 SAM dimer two orders of magnitude more stable than previously studied SAM homodimers, suggesting that the SLy1 SAM dimerization is of functional significance. The SLy1 SAM homodimer contains an exposed mid-loop surface on each monomer, which may provide a scaffold for mediating interactions with other SAM domain-containing proteins via a typical mid-loop–end-helix interface. |
536 | _ | _ | |a 551 - Functional Macromolecules and Complexes (POF3-551) |0 G:(DE-HGF)POF3-551 |c POF3-551 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Dingley, Andrew J. |0 P:(DE-Juel1)145681 |b 1 |
700 | 1 | _ | |a Granzin, Joachim |0 P:(DE-Juel1)131965 |b 2 |
700 | 1 | _ | |a Nagel-Steger, Luitgard |0 P:(DE-Juel1)162443 |b 3 |
700 | 1 | _ | |a Thiagarajan-Rosenkranz, Pallavi |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Ciupka, Daniel |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Hänel, Karen |0 P:(DE-Juel1)132005 |b 6 |
700 | 1 | _ | |a Batra-Safferling, Renu |0 P:(DE-Juel1)131950 |b 7 |
700 | 1 | _ | |a Pacheco, Victor |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Stoldt, Matthias |0 P:(DE-Juel1)132023 |b 9 |
700 | 1 | _ | |a Pfeffer, Klaus |0 0000-0002-5652-6330 |b 10 |
700 | 1 | _ | |a Beer-Hammer, Sandra |0 0000-0001-6049-0257 |b 11 |
700 | 1 | _ | |a Willbold, Dieter |0 P:(DE-Juel1)132029 |b 12 |e Corresponding author |
700 | 1 | _ | |a Koenig, Bernd W. |0 P:(DE-Juel1)132009 |b 13 |e Corresponding author |
773 | _ | _ | |a 10.1038/s41598-018-37185-3 |g Vol. 9, no. 1, p. 54 |0 PERI:(DE-600)2615211-3 |n 1 |p 54 |t Scientific reports |v 9 |y 2019 |x 2045-2322 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/860088/files/Structure%20of%20the%20SLy1%20SAM%20homodimer%20reveals%20a%20new%20interface%20for%20SAM%20domain%20self-association.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://juser.fz-juelich.de/record/860088/files/Structure%20of%20the%20SLy1%20SAM%20homodimer%20reveals%20a%20new%20interface%20for%20SAM%20domain%20self-association.pdf?subformat=pdfa |
909 | C | O | |o oai:juser.fz-juelich.de:860088 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)159147 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)145681 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)131965 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)162443 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)132005 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)131950 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)132023 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 12 |6 P:(DE-Juel1)132029 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 13 |6 P:(DE-Juel1)132009 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences |1 G:(DE-HGF)POF3-550 |0 G:(DE-HGF)POF3-551 |2 G:(DE-HGF)POF3-500 |v Functional Macromolecules and Complexes |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2019 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b SCI REP-UK : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)ICS-6-20110106 |k ICS-6 |l Strukturbiochemie |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)ICS-6-20110106 |
980 | _ | _ | |a APC |
981 | _ | _ | |a I:(DE-Juel1)IBI-7-20200312 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|