000860096 001__ 860096
000860096 005__ 20210130000440.0
000860096 0247_ $$2doi$$a10.1103/PhysRevMaterials.2.035002
000860096 0247_ $$2Handle$$a2128/21430
000860096 0247_ $$2WOS$$aWOS:000468106600001
000860096 037__ $$aFZJ-2019-00882
000860096 082__ $$a530
000860096 1001_ $$0P:(DE-HGF)0$$aSchie, Marcel$$b0$$eCorresponding author
000860096 245__ $$aField-enhanced route to generating anti-Frenkel pairs in HfO 2
000860096 260__ $$aCollege Park, MD$$bAPS$$c2018
000860096 3367_ $$2DRIVER$$aarticle
000860096 3367_ $$2DataCite$$aOutput Types/Journal article
000860096 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1552577377_2437
000860096 3367_ $$2BibTeX$$aARTICLE
000860096 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000860096 3367_ $$00$$2EndNote$$aJournal Article
000860096 520__ $$aThe generation of anti-Frenkel pairs (oxygen vacancies and oxygen interstitials) in monoclinic and cubic HfO2 under an applied electric field is examined. A thermodynamic model is used to derive an expression for the critical field strength required to generate an anti-Frenkel pair. The critical field strength of EcraF∼101GVm−1 obtained for HfO2 exceeds substantially the field strengths routinely employed in the forming and switching operations of resistive switching HfO2 devices, suggesting that field-enhanced defect generation is negligible. Atomistic simulations with molecular static (MS) and molecular dynamic (MD) approaches support this finding. The MS calculations indicated a high formation energy of ΔEaF≈8eV for the infinitely separated anti-Frenkel pair, and only a decrease to ΔEaF≈6eV for the adjacent anti-Frenkel pair. The MD simulations showed no defect generation in either phase for E<3GVm−1, and only sporadic defect generation in the monoclinic phase (at E=3GVm−1) with fast (trec<4ps) recombination. At even higher E but below EcraF both monoclinic and cubic structures became unstable as a result of field-induced deformation of the ionic potential wells. Further MD investigations starting with preexisting anti-Frenkel pairs revealed recombination of all pairs within trec<1ps, even for the case of neutral vacancies and charged interstitials, for which formally there is no electrostatic attraction between the defects. In conclusion, we find no physically reasonable route to generating point-defects in HfO2 by an applied field.
000860096 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000860096 536__ $$0G:(DE-Juel1)jpgi70_20120501$$aModelling the Valency Change Memory Effect in Resistive Switching Random Access Memory (RRAM) (jpgi70_20120501)$$cjpgi70_20120501$$fModelling the Valency Change Memory Effect in Resistive Switching Random Access Memory (RRAM)$$x1
000860096 588__ $$aDataset connected to CrossRef
000860096 7001_ $$0P:(DE-Juel1)158062$$aMenzel, Stephan$$b1
000860096 7001_ $$0P:(DE-HGF)0$$aRobertson, John$$b2
000860096 7001_ $$0P:(DE-Juel1)131022$$aWaser, R.$$b3
000860096 7001_ $$0P:(DE-HGF)0$$aDe Souza, Roger A.$$b4
000860096 773__ $$0PERI:(DE-600)2898355-5$$a10.1103/PhysRevMaterials.2.035002$$gVol. 2, no. 3, p. 035002$$n3$$p035002$$tPhysical review materials$$v2$$x2475-9953$$y2018
000860096 8564_ $$uhttps://juser.fz-juelich.de/record/860096/files/PhysRevMaterials.2.035002.pdf$$yOpenAccess
000860096 8564_ $$uhttps://juser.fz-juelich.de/record/860096/files/PhysRevMaterials.2.035002.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000860096 909CO $$ooai:juser.fz-juelich.de:860096$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000860096 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158062$$aForschungszentrum Jülich$$b1$$kFZJ
000860096 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131022$$aForschungszentrum Jülich$$b3$$kFZJ
000860096 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000860096 9141_ $$y2018
000860096 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000860096 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000860096 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV MATER : 2017
000860096 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000860096 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000860096 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000860096 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000860096 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000860096 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000860096 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000860096 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x2
000860096 980__ $$ajournal
000860096 980__ $$aVDB
000860096 980__ $$aI:(DE-Juel1)PGI-7-20110106
000860096 980__ $$aI:(DE-82)080009_20140620
000860096 980__ $$aI:(DE-82)080012_20140620
000860096 980__ $$aUNRESTRICTED
000860096 9801_ $$aFullTexts