001     860096
005     20210130000440.0
024 7 _ |a 10.1103/PhysRevMaterials.2.035002
|2 doi
024 7 _ |a 2128/21430
|2 Handle
024 7 _ |a WOS:000468106600001
|2 WOS
037 _ _ |a FZJ-2019-00882
082 _ _ |a 530
100 1 _ |a Schie, Marcel
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Field-enhanced route to generating anti-Frenkel pairs in HfO 2
260 _ _ |a College Park, MD
|c 2018
|b APS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1552577377_2437
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The generation of anti-Frenkel pairs (oxygen vacancies and oxygen interstitials) in monoclinic and cubic HfO2 under an applied electric field is examined. A thermodynamic model is used to derive an expression for the critical field strength required to generate an anti-Frenkel pair. The critical field strength of EcraF∼101GVm−1 obtained for HfO2 exceeds substantially the field strengths routinely employed in the forming and switching operations of resistive switching HfO2 devices, suggesting that field-enhanced defect generation is negligible. Atomistic simulations with molecular static (MS) and molecular dynamic (MD) approaches support this finding. The MS calculations indicated a high formation energy of ΔEaF≈8eV for the infinitely separated anti-Frenkel pair, and only a decrease to ΔEaF≈6eV for the adjacent anti-Frenkel pair. The MD simulations showed no defect generation in either phase for E<3GVm−1, and only sporadic defect generation in the monoclinic phase (at E=3GVm−1) with fast (trec<4ps) recombination. At even higher E but below EcraF both monoclinic and cubic structures became unstable as a result of field-induced deformation of the ionic potential wells. Further MD investigations starting with preexisting anti-Frenkel pairs revealed recombination of all pairs within trec<1ps, even for the case of neutral vacancies and charged interstitials, for which formally there is no electrostatic attraction between the defects. In conclusion, we find no physically reasonable route to generating point-defects in HfO2 by an applied field.
536 _ _ |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|0 G:(DE-HGF)POF3-521
|c POF3-521
|f POF III
|x 0
536 _ _ |a Modelling the Valency Change Memory Effect in Resistive Switching Random Access Memory (RRAM) (jpgi70_20120501)
|0 G:(DE-Juel1)jpgi70_20120501
|c jpgi70_20120501
|f Modelling the Valency Change Memory Effect in Resistive Switching Random Access Memory (RRAM)
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Menzel, Stephan
|0 P:(DE-Juel1)158062
|b 1
700 1 _ |a Robertson, John
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Waser, R.
|0 P:(DE-Juel1)131022
|b 3
700 1 _ |a De Souza, Roger A.
|0 P:(DE-HGF)0
|b 4
773 _ _ |a 10.1103/PhysRevMaterials.2.035002
|g Vol. 2, no. 3, p. 035002
|0 PERI:(DE-600)2898355-5
|n 3
|p 035002
|t Physical review materials
|v 2
|y 2018
|x 2475-9953
856 4 _ |u https://juser.fz-juelich.de/record/860096/files/PhysRevMaterials.2.035002.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/860096/files/PhysRevMaterials.2.035002.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:860096
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)158062
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)131022
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-521
|2 G:(DE-HGF)POF3-500
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV MATER : 2017
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21