000860138 001__ 860138
000860138 005__ 20240708133137.0
000860138 0247_ $$2doi$$a10.1016/j.apenergy.2019.113794
000860138 0247_ $$2ISSN$$a0306-2619
000860138 0247_ $$2ISSN$$a1872-9118
000860138 0247_ $$2WOS$$aWOS:000497978100042
000860138 037__ $$aFZJ-2019-00924
000860138 082__ $$a620
000860138 1001_ $$0P:(DE-Juel1)171337$$aCaglayan, Dilara Gülcin$$b0$$eCorresponding author
000860138 245__ $$aThe Techno-Economic Potential of Offshore Wind Energy with Optimized Future Turbine Designs in Europe
000860138 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2019
000860138 3367_ $$2DRIVER$$aarticle
000860138 3367_ $$2DataCite$$aOutput Types/Journal article
000860138 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1573478269_25513
000860138 3367_ $$2BibTeX$$aARTICLE
000860138 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000860138 3367_ $$00$$2EndNote$$aJournal Article
000860138 520__ $$aRenewable energy sources will play a central role in the sustainable energy systems of the future. Scenario analyses of the hypothesized energy systems require sound knowledge of the techno-economic potential of renewable energy technologies. Although there have been various studies concerning the potential of offshore wind energy, higher spatial resolution as well as the future design concepts of offshore wind turbines have not yet been addressed in sufficient detail. This work aims to overcome this gap by applying a high spatial resolution to the three main aspects of offshore wind potential analysis, namely: ocean suitability, the simulation of wind turbines, and cost estimation. A set of constraints is determined that reveal the available areas for turbine placement across Europe’s maritime boundaries. Then, turbine designs specific to each location are selected by identifying turbines with the cheapest levelized cost of electricity, restricted to capacities, hub heights and rotor diameters ranges predicted by industry experts. Ocean eligibility and turbine design are then combined to distribute turbines across the available areas. Finally, levelized cost of electricity trends are calculated from the individual turbine costs, as well as the corresponding capacity factor obtained by hourly simulation with wind speeds from 1980 to 2017. The results of cost-optimal turbine designing reveal that the overall potential for offshore wind energy across Europe will constitute nearly 8.6 TW and 40.0 PWh at roughly 7 €ct kWh−1 average levelized cost of electricity by 2050. Averaged design parameters at national level are provided in an Appendix.
000860138 536__ $$0G:(DE-HGF)POF3-134$$a134 - Electrolysis and Hydrogen (POF3-134)$$cPOF3-134$$fPOF III$$x0
000860138 588__ $$aDataset connected to CrossRef
000860138 7001_ $$0P:(DE-Juel1)169156$$aRyberg, Severin David$$b1
000860138 7001_ $$0P:(DE-Juel1)145221$$aHeinrichs, Heidi$$b2
000860138 7001_ $$0P:(DE-Juel1)130470$$aLinssen, Jochen$$b3
000860138 7001_ $$0P:(DE-Juel1)129928$$aStolten, Detlef$$b4
000860138 7001_ $$0P:(DE-Juel1)156460$$aRobinius, Martin$$b5
000860138 773__ $$0PERI:(DE-600)2000772-3$$a10.1016/j.apenergy.2019.113794$$gVol. 255, p. 113794 -$$p113794 -$$tApplied energy$$v255$$x0306-2619$$y2019
000860138 909CO $$ooai:juser.fz-juelich.de:860138$$pVDB
000860138 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171337$$aForschungszentrum Jülich$$b0$$kFZJ
000860138 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169156$$aForschungszentrum Jülich$$b1$$kFZJ
000860138 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145221$$aForschungszentrum Jülich$$b2$$kFZJ
000860138 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130470$$aForschungszentrum Jülich$$b3$$kFZJ
000860138 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129928$$aForschungszentrum Jülich$$b4$$kFZJ
000860138 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)129928$$aRWTH Aachen$$b4$$kRWTH
000860138 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156460$$aForschungszentrum Jülich$$b5$$kFZJ
000860138 9131_ $$0G:(DE-HGF)POF3-134$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrolysis and Hydrogen$$x0
000860138 9141_ $$y2019
000860138 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPPL ENERG : 2017
000860138 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000860138 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000860138 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000860138 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000860138 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000860138 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000860138 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000860138 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000860138 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000860138 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000860138 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bAPPL ENERG : 2017
000860138 920__ $$lyes
000860138 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lElektrochemische Verfahrenstechnik$$x0
000860138 980__ $$ajournal
000860138 980__ $$aVDB
000860138 980__ $$aI:(DE-Juel1)IEK-3-20101013
000860138 980__ $$aUNRESTRICTED
000860138 981__ $$aI:(DE-Juel1)ICE-2-20101013