001     860138
005     20240708133137.0
024 7 _ |a 10.1016/j.apenergy.2019.113794
|2 doi
024 7 _ |a 0306-2619
|2 ISSN
024 7 _ |a 1872-9118
|2 ISSN
024 7 _ |a WOS:000497978100042
|2 WOS
037 _ _ |a FZJ-2019-00924
082 _ _ |a 620
100 1 _ |a Caglayan, Dilara Gülcin
|0 P:(DE-Juel1)171337
|b 0
|e Corresponding author
245 _ _ |a The Techno-Economic Potential of Offshore Wind Energy with Optimized Future Turbine Designs in Europe
260 _ _ |a Amsterdam [u.a.]
|c 2019
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1573478269_25513
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Renewable energy sources will play a central role in the sustainable energy systems of the future. Scenario analyses of the hypothesized energy systems require sound knowledge of the techno-economic potential of renewable energy technologies. Although there have been various studies concerning the potential of offshore wind energy, higher spatial resolution as well as the future design concepts of offshore wind turbines have not yet been addressed in sufficient detail. This work aims to overcome this gap by applying a high spatial resolution to the three main aspects of offshore wind potential analysis, namely: ocean suitability, the simulation of wind turbines, and cost estimation. A set of constraints is determined that reveal the available areas for turbine placement across Europe’s maritime boundaries. Then, turbine designs specific to each location are selected by identifying turbines with the cheapest levelized cost of electricity, restricted to capacities, hub heights and rotor diameters ranges predicted by industry experts. Ocean eligibility and turbine design are then combined to distribute turbines across the available areas. Finally, levelized cost of electricity trends are calculated from the individual turbine costs, as well as the corresponding capacity factor obtained by hourly simulation with wind speeds from 1980 to 2017. The results of cost-optimal turbine designing reveal that the overall potential for offshore wind energy across Europe will constitute nearly 8.6 TW and 40.0 PWh at roughly 7 €ct kWh−1 average levelized cost of electricity by 2050. Averaged design parameters at national level are provided in an Appendix.
536 _ _ |a 134 - Electrolysis and Hydrogen (POF3-134)
|0 G:(DE-HGF)POF3-134
|c POF3-134
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Ryberg, Severin David
|0 P:(DE-Juel1)169156
|b 1
700 1 _ |a Heinrichs, Heidi
|0 P:(DE-Juel1)145221
|b 2
700 1 _ |a Linssen, Jochen
|0 P:(DE-Juel1)130470
|b 3
700 1 _ |a Stolten, Detlef
|0 P:(DE-Juel1)129928
|b 4
700 1 _ |a Robinius, Martin
|0 P:(DE-Juel1)156460
|b 5
773 _ _ |a 10.1016/j.apenergy.2019.113794
|g Vol. 255, p. 113794 -
|0 PERI:(DE-600)2000772-3
|p 113794 -
|t Applied energy
|v 255
|y 2019
|x 0306-2619
909 C O |o oai:juser.fz-juelich.de:860138
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)171337
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)169156
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)145221
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130470
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129928
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 4
|6 P:(DE-Juel1)129928
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)156460
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-134
|2 G:(DE-HGF)POF3-100
|v Electrolysis and Hydrogen
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2019
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b APPL ENERG : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b APPL ENERG : 2017
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-3-20101013
|k IEK-3
|l Elektrochemische Verfahrenstechnik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-3-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21